國立嘉義高級中學 110 學年度第 1 次教師甄選
一、 填充題(共 10 題, 每題 8 分,共 80 分)
解答:$$利用排容原理: 6!(1-{1\over 2!} +{1\over 3!} -{1\over 4!} +{1\over 5!} -{1\over 6!} )= 720\times {91\over 144}=455\\ \Rightarrow 6!-455=\bbox[red,2pt]{265}$$解答:$$1314588 =2^2\times 3\times 11\times 23\times 433 \Rightarrow N=(1+2+2^2) (1+3)(1+11)(1+23) (1+433)\\ = 7\times 4\times 12\times 24\times 434 = \bbox[red,2pt]{2^8\times 3^2\times 7^2\times 31}$$
解答:$$令\cases{f(a,b,c)=abc\\ g(a,b,c)=a+b^2+c^3-11} 及f=\lambda g \Rightarrow \cases{{\partial\over \partial a}f =\lambda {\partial\over \partial a}g \\{\partial\over \partial b}f =\lambda {\partial\over \partial b}g \\{\partial\over \partial c}f =\lambda {\partial\over \partial c}g } \Rightarrow \cases{bc=\lambda \cdots(1)\\ ac=2b\lambda \cdots(2)\\ ab=3c^2\lambda \cdots(3)}\\ 則\cases{(1)/(2)\\ (1)/(3)} \Rightarrow \cases{b/a=1/2b\\ c/a=1/3c^2} \Rightarrow \cases{a=2b^2 \\ a=3c^3} \Rightarrow 2b^2=3c^3 \Rightarrow b^2={3\over 2}c^3\\ 將\cases{a=3c^3\\ b^2=3c^3/2} 代入g(a,b,c)=0 \Rightarrow c^3=2 \Rightarrow b^2=3 \Rightarrow a=6 \Rightarrow abc=6\cdot \sqrt 3\cdot \sqrt[3] 2 = \bbox[red,2pt]{2^{4/3}\cdot 3^{3/2}}$$
解答:$$1,4的中間值是{5\over 2},而2,3的中間值也是{5\over 2},兩者相等;因此可取 f(x)=(x-{5\over 2})^2 \Rightarrow f最低為\bbox[red, 2pt]{2}次$$
解答:
$$假設樓頂為P(0,0,h),O為原點,依題意\cases{\angle OAP=30^\circ \Rightarrow \overline{OA}=\sqrt 3h\\ \angle OBP=60^\circ \Rightarrow \overline{OB}=h/\sqrt 3\\ \angle OCP=45^\circ \Rightarrow \overline{OC}=h}\\ \Rightarrow \cases{\cos \angle ABO={h^2/3+2500-3h^2\over 100h/\sqrt 3 } \\ \cos \angle OBC={h^2/3+2500-h^2\over 100h/\sqrt 3}},由於\angle ABO+\angle OBC=180^\circ \\\Rightarrow h^2/3+2500-3h^2=-(h^2/3+2500-h^2) \Rightarrow h^2=1500 \Rightarrow h=\bbox[red, 2pt]{10\sqrt{15}}$$
$$令\cases{\overline{AF} =a \\\overline{FB}=b},則依\text{Ceva }定理:{3\cdot 3\cdot a\over 2\cdot 4\cdot b}=1 \Rightarrow {a \over b}= \bbox[red,2pt]{8\over 9}$$
解答:$$如果你有背\log 7=0.845 \Rightarrow 30\log 7=25.35\Rightarrow 7^{30}為25+1=\bbox[red,2pt]{26}位數\\ 否則改用\log 7\approx (\log 6+\log 8)\div 2= (4\log 2+\log 3)\div 2=(4\times 0.301+0.4771)\div 2\approx 0.84 \\ \Rightarrow 0.84\times 30=25.2,答案也是相同的;\\ 也可以7^{30}=49^{15} \Rightarrow 48^{15}\lt 7^{30} \lt 50^{15} \Rightarrow 15\log 48\lt \log 7^{30} \lt 15\log 50\\ 由於\cases{15\log 48= 15(4\log 2+\log 3)=15(4\times 0.301+0.4771)=25.2165\\ 15\log 50=15(2-\log 2)=15(2-0.301)=25.485 }\\ \Rightarrow 25.2165 \lt \log 7^{30} \lt 25.485\Rightarrow 答案也是相同的;$$
解答:$$a_{n+2}=2a_{n+1}+3a_n+1 \Rightarrow a_{n+2}+{1\over 4}=2\left(a_{n+1}+{1\over 4}\right) +3\left(a_n+{1\over 4} \right) \\\Rightarrow b_{n+2} =2b_{n+1} +3b_n,其中\cases{b_n=a_n+1/4\\ b_0=a_0+1/4=5/4\\ b_1=a_1+1/4=9/4} \Rightarrow \lambda^2 -2\lambda -3=0 \Rightarrow (\lambda-3)(\lambda+1) =0\\ \Rightarrow \lambda=3,-1 \Rightarrow b_n= C_1\cdot 3^n+ C_2\cdot (-1)^n,其中C_1及C_2為常數\\ 由於\cases{b_1=9/4 = 3C_1-C_2\\ b_0=5/4=C_1+C_2} \Rightarrow \cases{C_1=7/8\\ C_2=3/8} \Rightarrow b_n={7\over 8}\cdot 3^n+{ 3\over 8}\cdot (-1)^n \Rightarrow b_{50}={7\over 8}\cdot 3^{50}+{ 3\over 8} \\ \Rightarrow a_{50}={7\over 8}\cdot 3^{50}+{ 3\over 8}-{1\over 4}= \bbox[red,2pt]{{7\over 8}\cdot 3^{50}+{ 1\over 8}}$$
解答:$$A^2=A \Rightarrow A 的特徵值\text{(eigenvalue) 不是}0就是1\\ a^2+b^2+c^2+d^2=tr(AA^T) \ge tr(A^2)= tr(A) = 所有特徵值的和,可能是0,1,2(\because A為2\times 2)\\若a^2+b^2+c^2+d^2=0,則a=b=c=d=0,即A=0(不合題意)\\因此最小值=\bbox[red,2pt]{1}$$
解答:$$切點P\in \Gamma:y=x^2+x+1 \Rightarrow P(t,t^2+t+1) \Rightarrow 過P之切線L斜率m=y'(t)=2t+1\\ 又切線過A(1,-2),因此L:y=(2t+1)(x-1)-2;\\ P\in L \Rightarrow t^2+t+1=(2t+1)(t-1)-2 \Rightarrow t^2-2t-4=0 \Rightarrow t=1\pm \sqrt 5 代入P\\ 可得二 切點\cases{B(1+\sqrt 5,8+3\sqrt 5) \\ C(1-\sqrt 5,8-3\sqrt 5)} \Rightarrow \cases{\overrightarrow{AB}= (\sqrt 5,10+3\sqrt 5)\\\overrightarrow{AC}=(-\sqrt 5,10-3\sqrt 5)} \\\Rightarrow \triangle ABC={1\over 2}\begin{Vmatrix} \sqrt 5 & 10+3\sqrt 5\\ -\sqrt 5 & 10-3\sqrt 5 \end{Vmatrix} ={1\over 2}\times 20\sqrt 5=\bbox[red,2pt]{10\sqrt 5}$$
解答:
解答:$$a_{n+2}=2a_{n+1}+3a_n+1 \Rightarrow a_{n+2}+{1\over 4}=2\left(a_{n+1}+{1\over 4}\right) +3\left(a_n+{1\over 4} \right) \\\Rightarrow b_{n+2} =2b_{n+1} +3b_n,其中\cases{b_n=a_n+1/4\\ b_0=a_0+1/4=5/4\\ b_1=a_1+1/4=9/4} \Rightarrow \lambda^2 -2\lambda -3=0 \Rightarrow (\lambda-3)(\lambda+1) =0\\ \Rightarrow \lambda=3,-1 \Rightarrow b_n= C_1\cdot 3^n+ C_2\cdot (-1)^n,其中C_1及C_2為常數\\ 由於\cases{b_1=9/4 = 3C_1-C_2\\ b_0=5/4=C_1+C_2} \Rightarrow \cases{C_1=7/8\\ C_2=3/8} \Rightarrow b_n={7\over 8}\cdot 3^n+{ 3\over 8}\cdot (-1)^n \Rightarrow b_{50}={7\over 8}\cdot 3^{50}+{ 3\over 8} \\ \Rightarrow a_{50}={7\over 8}\cdot 3^{50}+{ 3\over 8}-{1\over 4}= \bbox[red,2pt]{{7\over 8}\cdot 3^{50}+{ 1\over 8}}$$
解答:$$A^2=A \Rightarrow A 的特徵值\text{(eigenvalue) 不是}0就是1\\ a^2+b^2+c^2+d^2=tr(AA^T) \ge tr(A^2)= tr(A) = 所有特徵值的和,可能是0,1,2(\because A為2\times 2)\\若a^2+b^2+c^2+d^2=0,則a=b=c=d=0,即A=0(不合題意)\\因此最小值=\bbox[red,2pt]{1}$$
解答:$$切點P\in \Gamma:y=x^2+x+1 \Rightarrow P(t,t^2+t+1) \Rightarrow 過P之切線L斜率m=y'(t)=2t+1\\ 又切線過A(1,-2),因此L:y=(2t+1)(x-1)-2;\\ P\in L \Rightarrow t^2+t+1=(2t+1)(t-1)-2 \Rightarrow t^2-2t-4=0 \Rightarrow t=1\pm \sqrt 5 代入P\\ 可得二 切點\cases{B(1+\sqrt 5,8+3\sqrt 5) \\ C(1-\sqrt 5,8-3\sqrt 5)} \Rightarrow \cases{\overrightarrow{AB}= (\sqrt 5,10+3\sqrt 5)\\\overrightarrow{AC}=(-\sqrt 5,10-3\sqrt 5)} \\\Rightarrow \triangle ABC={1\over 2}\begin{Vmatrix} \sqrt 5 & 10+3\sqrt 5\\ -\sqrt 5 & 10-3\sqrt 5 \end{Vmatrix} ={1\over 2}\times 20\sqrt 5=\bbox[red,2pt]{10\sqrt 5}$$
二、 計算證明題(共 2 題,每題 10 分,共 20 分)
解答:$$假設x=\sqrt 2+\sqrt 3+\sqrt 5是有理數,則(x-\sqrt 5)^2=(\sqrt 2+\sqrt 3)^2\\ \Rightarrow x^2=2(\sqrt 6+\sqrt 5x) \Rightarrow x^4=4(6+5x^2+2\sqrt{30}x)\\ \Rightarrow {{1\over 4}x^4-6-5x^2 \over 2x}=\sqrt{30} \Rightarrow 有理數=無理數,矛盾,因此\sqrt 2+\sqrt 3+\sqrt 5不是有理數,\bbox[red,2pt]{故得證}$$解答:
(1)$$令\cases{甲得1票:向上走一步\\ 乙得1票:向右走一步} \Rightarrow P_{m,n}:從原點O(0,0),走格子點至P(n,m)不經過(a,a)的機率\\m個上、1個右的排列數為{(m+1)!\over m!}=m+1,其中\cases{開頭為右的數列有1個\\開頭為上右的數列也只有1個}\\,因此符合不經過(a,a)的數列有m+1-2=m-1個\Rightarrow \bbox[red,2pt]{P_{m,1}={m-1\over m+1}};\\m個上、2個右的排列數為{(m+2)!\over m!2!}={(m+2)(m+1)\over 2},其中\cases{開頭為右的數列有m+1個\\開頭為上右的數列 有m個\\ 開頭為上上右右的數列有1個}\\,因此符合不經過(a,a)的數列有{(m+2)(m+1)\over 2}-(m+1)-m-1= {(m+1)(m-2)\over 2}個\\\Rightarrow \bbox[red,2pt]{P_{m,2}={m-2\over m+2}};$$(2)$$從(0,0)至(n,m)的方法數=從(0,0)至(n-1,m)的方法數+從(0,0)至(n,m-1)的方法數\\ 因此P_{m,n}={{(m+n-1)!\over (m-1)!n!}P_{m-1,n} +{(m+n-1)!\over m!(n-1)!}P_{m,n-1} \over {(m+n)!\over m!n!}} =\bbox[red,2pt]{{m\over m+n}P_{m-1,n}+{n\over m+n}P_{m,n-1}}$$(3)$$由(1)可猜P_{m,n}={m-n\over m+n},m\ge n\\利用歸納法,令k=m+n,當k=2時,\cases{m=2,n=0 \Rightarrow P_{2,0}={2-0\over 2+0}=1\\ m=n=1 \Rightarrow P_{1,1}={1-1\over 1+1}=0},顯然成立;\\假設k=N時亦成立;當k=N+1時,P_{m,n}={m\over m+n}P_{m-1,n} +{n\over m+n}P_{m,n-1} \\={m\over m+n}\cdot {m-n-1\over m+n-1} +{n\over m+n}\cdot {m-n+1\over m+n-1} ={m^2-n^2-m+n\over (m+n)(m+n-1)}\\ ={(m-n)(m+n-1)\over (m+n)(m+n-1)}={m-n\over m+n}亦成立,\bbox[red,2pt]{故得證}$$
====================== end ================
沒有留言:
張貼留言