臺北市立建國高級中學 107 學年度第一次正式教師甄選
一、填充題: (每題 7 分,共 70 分)
解答:{A={ekπi/6,k=1−12}B={etπi/8,t=1−16}⇒C={esπi/48,s=(ktmod48)+1}⇒#(C)=48解答:先求A=n∑k=1k2k=12+222+⋯+n2n⇒12A=122+223+⋯+n−12n+n2n+1A−12A=12+122+⋯+12n−n2n+1⇒12A=1/2−1/2n+11−1/2−n2n+1=1−12n−n2n+1⇒A=2−n+22n現在B=n∑k=1k22k=12+2222+⋯+n22n⇒12B=122+2223+⋯+(n−1)22n+n22n+1⇒B−12B=12+322+⋯+2n−12n−n22n+1=n∑k=12k−12k−n22n+1=2n∑k=1k2k−n∑k=112k−n22n+1=2A−(1−12n)−n22n+1=2(2−n+22n)−1+12n−n22n+1=3−n+22n−1+12n−n22n+1⇒B=6−n+22n−2+12n−1−n22n=6−n2+4n+62n
解答:a4+182=(a2)2+182=(a2+18)2−36a2=(a2+18)2−(6a)2=(a2+6a+18)(a2−6a+18)=((a+3)2+9)((a−3)2+9)⇒分子=(42+9)(22+9)(142+9)(82+9)(262+9)(202+9)(382+9)(322+9)(502+9)(442+9),分母=(82+9)(22+9)(102+9)(42+9)(202+9)(142+9)(322+9)(262+9)(442+9)(382+9)⇒分子分母=502+9102+9=2509109
解答:沒有什麼好方法,只能先考慮f:B→B,再將A→{5,6}及{5,6}→A或反之,一個個加入計算,共4!×16+8×60=864
解答:令{f(x,y)=x3+y3+92x+92yg(x,y)=x2+y2−x−y及f=λg,則{fx=λgxfy=λgy⇒{3x2+92=λ(2x−1)⋯(1)3y2+92=λ(2y−1)⋯(2)(1)(2)⇒3x2+9/23y2+9/2=2x−12y−1⇒6x2y−3x2+9y=6xy2−3y2+9x⇒2xy(x−y)−(x2−y2)−3(x−y)=0⇒(x−y)(2xy−x−y−3)=0⇒x=y將x=y代入g(x,y)=0⇒2x2−2x=0⇒x=1⇒f(1,1)=2+9=11
解答:
假設{A(0,0,0)B在x軸上C在xy平面上¯AB=b¯AC=c¯AD=d⇒{B(b,0,0)C(ccosθ,csinθ,0)D(0,0,d)⇒{→DB=(b,0,−d)→DC=(ccosθ,csinθ,−d)⇒{平面BCD法向量→u=→DB×→DC=(cdsinθ,bd−cdcosθ,bcsinθ)平面ABD:y=0⇒法向量→v=(0,1,0)由於ABD⊥BCD⇒→u⋅→v=0⇒bd=cdcosθ⇒b=ccosθ⇒cosθ=bc⇒∠ABC=90∘⇒∠DBC=90∘⇒{¯CD=2ׯBD=2√3¯BC=√3ׯBD=3⇒{△ABD=bd/2△ACD=cd/2△BCD=¯CD⋅¯BDsin60∘/2=3√3/2⇒△ABD2+△ACD2+△BCD2=14(b2d2+c2d2+27)=10⇒d2(b2+c2)=13⇒(3−b2)(b2+b2+32)=13⇒2b4+3b2−14=0⇒(b2−2)(2b2+7)=0⇒b=√2⇒sinADB=b√3=√2√3=√63
解答:
令{E(1,0)P為¯AC中點Q為¯BD中點¯OP=a¯OQ=b,則{¯OP⊥¯AC¯OQ⊥¯BDa2+b2=1;因此{¯AP=√22−a2¯BQ=√22−b2⇒ABCD面積=12ׯACׯBD=12×2¯AP×2¯BQ=2×√4−a2×√4−b2≤(4−a2)+(4−b2)=8−1=7⇒面積最大值為7
解答:令{A(0,0,0)C(9,0,0)B(a,b,0),則{¯AB=5¯BC=8⇒{a2+b2=25(a−9)2+b2=64⇒−18a+81+25=64⇒a=73⇒(73)2+b2=25⇒b2=1769,取b=43√11⇒B(73,43√11,0)再令D(α,β,γ),則{¯AD=11¯BD=12¯CD=10⇒{α2+β2+γ2=121⋯(1)(α−73)2+(β−43√11)2+γ2=144⋯(2)(α−9)2+β2+γ2=100⋯(3)將(1)代入(3)⇒−18α+81+121=100⇒α=173代入(1)及(2)⇒{β2+γ2=8009(β−43√11)2+γ2=11969⇒−83√11β=2209⇒β=−56√11⇒γ2=8009−27536=3254,取γ=52√13⇒D(173,−56√11,52√13)⇒{→DA=(−173,56√11,−52√13)→DC=(103,56√11,−52√13)⇒→u=→DA×→DC=(0,−452√13,−152√11);而平面ABC的法向量為→v=(0,0,1),因此cosθ=→u⋅→v|→u||→v|=−152√1160√2=−√2216
解答:6+1n+1<3√220<6+1n⇒1n+1<3√220−6<1n⇒n<13√220−6<n+113√220−6=3√2202+63√220+62(3√220)3−63)=3√2202+63√220+364⇒62+6⋅6+364<13√220−6<6.12+6⋅6.1+364(∵
解答:{x\over 61}=0.d_1d_2d_3\cdots,因此\cases{d_{37}=2 \Rightarrow 10^{36}x\equiv 13,14,15,16,17,18 \;(\mod 61) \cdots(1) \\d_{65}=3 \Rightarrow 10^{64}x \equiv 19,20,21,22,23,24 \;(\mod 61) \cdots(2)} \\ 而10000= 164\times 61-4 \Rightarrow 10^4 \equiv -4 \mod 61 \Rightarrow 10^{28} \equiv 25 \mod 61\\,因此\cases{若10^{36}x =13\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (13\times 25) \mod 61 \Rightarrow 10^{64}x = 20 \mod 61 \\若10^{36}x =14\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (14\times 25) \mod 61 \Rightarrow 10^{64}x = 45 \mod 61\\ 若10^{36}x =15\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (15\times 25) \mod 61 \Rightarrow 10^{64}x = 9 \mod 61\\ 若10^{36}x =16\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (16\times 25) \mod 61 \Rightarrow 10^{64}x = 34 \mod 61 \\ 若10^{36}x =17\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (17\times 25) \mod 61 \Rightarrow 10^{64}x = 59 \mod 61\\ 若10^{36}x =18\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (18\times 25) \mod 61 \Rightarrow 10^{64}x = 23 \mod 61}\\ 有兩組解符合(1)及(2),即\cases{10^{36}x \equiv 13 \mod 61\\ 10^{64}x \equiv 20 \mod 61} 及\cases{10^{36}x \equiv 18 \mod 61\\ 10^{64}x \equiv 23 \mod 61}\\ 由於10^{36} \equiv 34 \mod 61 \Rightarrow \cases{\cases{10^{36}x \equiv 13 \mod 61\\ 10^{36} \equiv 34 \mod 61} \Rightarrow x \equiv 56 \mod 61 \\\cases{10^{36}x \equiv 18 \mod 61\\ 10^{36} \equiv 34 \mod 61} \Rightarrow x \equiv 40 \mod 61 }\\ 又10^{35}\equiv 40 \mod 61 \Rightarrow \cases{x \equiv 56 \mod 61 \Rightarrow 10^{35}x \equiv 44 \mod 61 \Rightarrow d_{36}=7 \\ x \equiv 40 \mod 61 \Rightarrow 10^{35}x \equiv 14 \mod 61 \Rightarrow d_{36}=2}\\ 因此(x,d_{36})= \bbox[red,2pt]{(56,7),(40,2)}\\ 學校公佈的答案只有\bbox[blue,2pt]{(56,7)},經電腦計算,(40,2)也合乎要求!
解答:6+1n+1<3√220<6+1n⇒1n+1<3√220−6<1n⇒n<13√220−6<n+113√220−6=3√2202+63√220+62(3√220)3−63)=3√2202+63√220+364⇒62+6⋅6+364<13√220−6<6.12+6⋅6.1+364(∵
解答:{x\over 61}=0.d_1d_2d_3\cdots,因此\cases{d_{37}=2 \Rightarrow 10^{36}x\equiv 13,14,15,16,17,18 \;(\mod 61) \cdots(1) \\d_{65}=3 \Rightarrow 10^{64}x \equiv 19,20,21,22,23,24 \;(\mod 61) \cdots(2)} \\ 而10000= 164\times 61-4 \Rightarrow 10^4 \equiv -4 \mod 61 \Rightarrow 10^{28} \equiv 25 \mod 61\\,因此\cases{若10^{36}x =13\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (13\times 25) \mod 61 \Rightarrow 10^{64}x = 20 \mod 61 \\若10^{36}x =14\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (14\times 25) \mod 61 \Rightarrow 10^{64}x = 45 \mod 61\\ 若10^{36}x =15\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (15\times 25) \mod 61 \Rightarrow 10^{64}x = 9 \mod 61\\ 若10^{36}x =16\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (16\times 25) \mod 61 \Rightarrow 10^{64}x = 34 \mod 61 \\ 若10^{36}x =17\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (17\times 25) \mod 61 \Rightarrow 10^{64}x = 59 \mod 61\\ 若10^{36}x =18\mod 61 \Rightarrow 10^{28}\cdot 10^{36}x= (18\times 25) \mod 61 \Rightarrow 10^{64}x = 23 \mod 61}\\ 有兩組解符合(1)及(2),即\cases{10^{36}x \equiv 13 \mod 61\\ 10^{64}x \equiv 20 \mod 61} 及\cases{10^{36}x \equiv 18 \mod 61\\ 10^{64}x \equiv 23 \mod 61}\\ 由於10^{36} \equiv 34 \mod 61 \Rightarrow \cases{\cases{10^{36}x \equiv 13 \mod 61\\ 10^{36} \equiv 34 \mod 61} \Rightarrow x \equiv 56 \mod 61 \\\cases{10^{36}x \equiv 18 \mod 61\\ 10^{36} \equiv 34 \mod 61} \Rightarrow x \equiv 40 \mod 61 }\\ 又10^{35}\equiv 40 \mod 61 \Rightarrow \cases{x \equiv 56 \mod 61 \Rightarrow 10^{35}x \equiv 44 \mod 61 \Rightarrow d_{36}=7 \\ x \equiv 40 \mod 61 \Rightarrow 10^{35}x \equiv 14 \mod 61 \Rightarrow d_{36}=2}\\ 因此(x,d_{36})= \bbox[red,2pt]{(56,7),(40,2)}\\ 學校公佈的答案只有\bbox[blue,2pt]{(56,7)},經電腦計算,(40,2)也合乎要求!
===== END ====
學校未公告計算題題目,解題僅供參考,其他教甄試題及詳解
沒有留言:
張貼留言