台灣聯合大學系統108學年度學士班轉學生考試
科目:微積分
類組別:A2
甲、填充題:共8題,每題8分,共64分
$$\cases{\triangle ACD=1\\ \triangle BDE=2} \Rightarrow 平均值={2-1\over 3-(-1)} = \bbox[red,2pt]{1\over 4}$$
解答:$$令\cases{u=x \Rightarrow du=dx\\ dv=\sec^2 xdx \Rightarrow v=\tan x} \Rightarrow \int x\sec^2 x\,dx = x\tan x-\int \tan x\,dx \\= \bbox[red, 2pt]{x\tan x+\ln|\cos x|+C}$$
解答:$$\int_0^2 \int_{y/2}^1 ye^{x^3}\,dxdy = \int_0^1 \int_0^{2x} ye^{x^3}\,dydx= \int_0^1 2x^2e^{x^3}\,dydx = \left. \left[ {2\over 3}e^{x^3} \right] \right|_0^1 = \bbox[red, 2pt]{{2\over 3}(e-1)}$$
解答:$$\cases{\lim_{x\to 0^+} f(x)= \lim_{x\to 0^+} {2\sin^2 x\over x}= 0\\\lim_{x\to 0^-} f(x)= \lim_{x\to 0^-} ax+ b\cos x=b } \Rightarrow b=0 \Rightarrow f'(x)=\begin{cases}{2\sin(2x)\over x}-{2\sin^2 x\over x^2}, & \text{if }x\gt 0\\a, & \text{if }x\le 0 \end{cases}\\ \Rightarrow \cases{\lim_{x\to 0^+} f'(x)= \lim_{x\to 0^+} {2\sin(2x)\over x}-{2\sin^2 x\over x^2}= 2\\ \lim_{x\to 0^-} f(x)= \lim_{x\to 0^-} a= a } \Rightarrow a=2\\ \Rightarrow \bbox[red,2pt]{a=2,b=0}$$
解答:$${\partial \over \partial x}(x^2 \cos^2 y-\sin y)=0 \Rightarrow 2x\cos^2y-2x^2 y'\cos y\sin y-y'\cos y=0\\ 將(0,\pi)代入上式 \Rightarrow y'=0 \Rightarrow 切線為一水平線且經過(0,\pi),即\bbox[red, 2pt]{y=\pi}$$
解答:
解答:$$\int_0^2 \int_{y/2}^1 ye^{x^3}\,dxdy = \int_0^1 \int_0^{2x} ye^{x^3}\,dydx= \int_0^1 2x^2e^{x^3}\,dydx = \left. \left[ {2\over 3}e^{x^3} \right] \right|_0^1 = \bbox[red, 2pt]{{2\over 3}(e-1)}$$
解答:$$\cases{\lim_{x\to 0^+} f(x)= \lim_{x\to 0^+} {2\sin^2 x\over x}= 0\\\lim_{x\to 0^-} f(x)= \lim_{x\to 0^-} ax+ b\cos x=b } \Rightarrow b=0 \Rightarrow f'(x)=\begin{cases}{2\sin(2x)\over x}-{2\sin^2 x\over x^2}, & \text{if }x\gt 0\\a, & \text{if }x\le 0 \end{cases}\\ \Rightarrow \cases{\lim_{x\to 0^+} f'(x)= \lim_{x\to 0^+} {2\sin(2x)\over x}-{2\sin^2 x\over x^2}= 2\\ \lim_{x\to 0^-} f(x)= \lim_{x\to 0^-} a= a } \Rightarrow a=2\\ \Rightarrow \bbox[red,2pt]{a=2,b=0}$$
解答:$${\partial \over \partial x}(x^2 \cos^2 y-\sin y)=0 \Rightarrow 2x\cos^2y-2x^2 y'\cos y\sin y-y'\cos y=0\\ 將(0,\pi)代入上式 \Rightarrow y'=0 \Rightarrow 切線為一水平線且經過(0,\pi),即\bbox[red, 2pt]{y=\pi}$$
解答:
$$兩圖形\cases{y=f(x)=-x^2+4x\\ y=g(x)=x^2} 交於\cases{O(0,0)\\ A(2,4)} \Rightarrow 相交區域如上圖著色區域\\因此繞x軸旋轉體積為\int_0^2 (f(x)-g(x))^2\pi \,dx = \pi\int_0^2 (-2x^2+4x)^2\,dx = \pi\int_0^2 4x^4-16x^3+16x^2\,dx \\=\pi \left.\left[ {4\over 5}x^5-4x^4 +{16\over 3}x^3\right] \right|_0^2 =\bbox[red, 2pt]{{64\over 15}\pi} $$
解答:$$\lim_{x\to 0^+} (\sin x)^x = \lim_{x\to 0^+} e^{x\ln(\sin x)} = \bbox[red, 2pt] 1$$
解答:$$g(x)=\begin{cases} x^2\sin{1\over x},& \text{if }x\ne 0\\ 0, & \text{if }x=0.\end{cases} \Rightarrow g'(x)=\begin{cases} 2x \sin{1\over x}-\cos{1\over x},& \text{if }x\ne 0\\ 0, & \text{if }x=0.\end{cases} \\\Rightarrow \cases{g'(0)=0 \Rightarrow g'(0)存在\\ \lim_{x\to 0} g'(x) =\lim_{x\to 0}\left(2x \sin{1\over x}-\cos{1\over x}\right)不存在},\bbox[red,2pt]{故得證}$$
解答:$$\mathbf{a.}\; \lim_{n\to \infty}\left| {a_{n+1}\over a_n}\right| =\lim_{n\to \infty}\left| {e^{-(n+1)^2} \over e^{-n^2}}\right|
=\lim_{n \to \infty} \left| {e^{n^2} \over e^{(n+1)^2}}\right| =\lim_{n \to \infty} \left| {1 \over e^{2n+1}}\right| =0 \Rightarrow \bbox[red, 2pt]{收斂} \\\mathbf{b.}\;\lim_{n\to \infty}{\sin(1/n)\over 1/n} =\lim_{n\to \infty}{(\sin(1/n))'\over (1/n)'} =\lim_{n\to \infty}{(1/n)'\cos(1/n)\over (1/n)'} =\lim_{n\to \infty} \cos(1/n)=1\\ 由於\sum_{n=1}^\infty {1\over n}發散,因此\sum_{n=1}^\infty \sin{1\over n}\bbox[red, 2pt]{發散}(極限比較審斂法)$$
解答:$$\sum_{n=3}^\infty {\ln(1+{1\over n}) \over (\ln n)\ln(n+1)} =\sum_{n=3}^\infty {\ln({n+1\over n}) \over (\ln n)\ln(n+1)} =\sum_{n=3}^\infty {\ln(n+1)-\ln n \over (\ln n)\ln(n+1)} =\sum_{n=3}^\infty \left({1\over \ln n } -{1\over \ln(n+1)} \right)\\ =({1\over \ln 3}-{1\over \ln 4})+ ({1\over \ln 4}- {1\over \ln 5})+ ({1\over \ln 5}- {1\over \ln 6})+\cdots =\bbox[red, 2pt]{1\over \ln 3}$$
乙、計算、證明題:共3題,每題12分,共36分
解答:$$假設三邊長度分別為x,y,z,則\cases{容量 =xyz\\ 費用 3xy+ 2yz+ 2zx=36}; 由費用可知z={36-3xy\over 2(x+y)} 代入容量\\ \Rightarrow f(x,y)=xy \cdot {36-3xy\over 2(x+y)} \Rightarrow \cases{f_x=0 \Rightarrow x^2+2xy=12\\ f_y=0 \Rightarrow y^2+2xy=12} \Rightarrow x=y=2 \Rightarrow z=3\\ 因此三邊長分別為\bbox[red,2pt]{2,2,3}$$解答:$$g(x)=\begin{cases} x^2\sin{1\over x},& \text{if }x\ne 0\\ 0, & \text{if }x=0.\end{cases} \Rightarrow g'(x)=\begin{cases} 2x \sin{1\over x}-\cos{1\over x},& \text{if }x\ne 0\\ 0, & \text{if }x=0.\end{cases} \\\Rightarrow \cases{g'(0)=0 \Rightarrow g'(0)存在\\ \lim_{x\to 0} g'(x) =\lim_{x\to 0}\left(2x \sin{1\over x}-\cos{1\over x}\right)不存在},\bbox[red,2pt]{故得證}$$
解答:$$\mathbf{a.}\; \lim_{n\to \infty}\left| {a_{n+1}\over a_n}\right| =\lim_{n\to \infty}\left| {e^{-(n+1)^2} \over e^{-n^2}}\right|
=\lim_{n \to \infty} \left| {e^{n^2} \over e^{(n+1)^2}}\right| =\lim_{n \to \infty} \left| {1 \over e^{2n+1}}\right| =0 \Rightarrow \bbox[red, 2pt]{收斂} \\\mathbf{b.}\;\lim_{n\to \infty}{\sin(1/n)\over 1/n} =\lim_{n\to \infty}{(\sin(1/n))'\over (1/n)'} =\lim_{n\to \infty}{(1/n)'\cos(1/n)\over (1/n)'} =\lim_{n\to \infty} \cos(1/n)=1\\ 由於\sum_{n=1}^\infty {1\over n}發散,因此\sum_{n=1}^\infty \sin{1\over n}\bbox[red, 2pt]{發散}(極限比較審斂法)$$
================ END =====================
解題僅供參考,其他大學轉學考相關試題及詳解
沒有留言:
張貼留言