國立臺灣海洋大學108學年度轉學生入學招生考試
考試科目:微積分
系組名稱:機械二、輪機能源二(G)、輪機動力二(G)、電機二(G)、資工二(B)、通訊二(B)、光電二(B)
解答:(a)limx→01−exe2x−1=limx→0−(ex−1)(ex+1)(ex−1)=limx→0−1ex+1=−12(b)limx→2+(8x2−4−xx−2)=limx→2+8−x(x+2)x2−4=limx→2+−(x+4)(x−2)(x+2)(x−2)=limx→2+−(x+4)x+2=−32(c)lim(x,y)→(0,0)x−y√x−√y=lim(x,y)→(0,0)(√x−√y)(√x+√y)√x−√y=lim(x,y)→(0,0)(√x+√y)=0解答:(a)f(t)=√3t+1t⇒f′(t)=32⋅1√3t+1⋅1t−√3t+1t2=32t√3t+1−√3t+1t2(b)f(x)=ln3√x−22x+1=13(ln(x−2)−ln(2x+1))⇒f′(x)=13(1x−2−22x+1)=53(x−2)(2x+1)
解答:f(x,y)=ycos(x−y)⇒∇f=(fx,fy)=(−ysin(x−y),cos(x−y)+ysin(x−y))⇒∇f(0,π/3)=(−π3sin(−π3),cos(−π3)+π3sin(−π3))=(√3π6,3−√3π6)
解答:→u=→PQ|→PQ|=(−2,−4,0)√(−2)2+(−4)2=(−1√5,−2√5,0)⇒方向導數D→uh=∇h⋅→u=(ezy,ezx,ezxy)⋅(−1√5,−2√5,0)=−1√5ezy−2√5ezx⇒D→uh|(2,4,0)=−4√5−4√5=−8√55
解答:f(x,y)=2xy−12(x4+y4)+12⇒{fx=2y−2x3fy=2x−2y3⇒{fxx=−6x2fxy=2fyy=−6y2因此{fx=0fy=0⇒(a):臨界點(x,y)=(0,0),(1,1),(−1,−1)又{fxx(0,0)fyy(0,0)−(fxy(0,0))2=−4<0fxx(1,1)fyy(1,1)−(fxy(1,1))2=32>0fxx(−1,−1)fyy(−1,−1)−(fxy(−1,−1))2=32>0⇒(b):{(0,0)為鞍點(1,1)及(−1,−1)為相對極值點
解答:(a)∫π0(4x1/3−2sinx)dx=[3x4/3+2cosx]|π0=3π4/3−4(b){u=x⇒du=dxdv=sec2xdx⇒v=tanx⇒∫xsec2xdx=xtanx−∫tanxdx=xtanx−ln|secx|+C(c)∫2x2+x+1x+x3dx=∫(1x+x+1x2+1)dx=∫1xdx+∫xx2+1dx+∫1x2+1dx=ln|x|+12ln(x2+1)+tan−1x+C(d)u=3x+1⇒du=3dx⇒∫10x√3x+1dx=∫41u−13⋅√u⋅13du=19∫41(u3/2−u1/2)du=19[25u5/2−23u3/2]|41=19(25⋅32−23⋅8−(25−23))=116135(e)u=√x⇒du=12√xdx⇒∫10lnx√xdx=∫10ln(u2)2du=4∫10lnudu=4[x(lnx−1)]|10=−4(f)sin(7x)cos(5x)=sin(5x+2x)cos(5x)=sin(5x)cos(2x)cos(5x)+cos2(5x)sin(2x)=12sin(10x)cos(2x)+12(cos(10x)+1)sin(2x)=12sin(12x)+12sin(2x)⇒∫sin(7x)cos(5x)dx=12∫(sin(12x)+sin(2x))dx=−124cos(12x)−14cos(2x)+C
解答:
解答:f(x,y)=ycos(x−y)⇒∇f=(fx,fy)=(−ysin(x−y),cos(x−y)+ysin(x−y))⇒∇f(0,π/3)=(−π3sin(−π3),cos(−π3)+π3sin(−π3))=(√3π6,3−√3π6)
解答:→u=→PQ|→PQ|=(−2,−4,0)√(−2)2+(−4)2=(−1√5,−2√5,0)⇒方向導數D→uh=∇h⋅→u=(ezy,ezx,ezxy)⋅(−1√5,−2√5,0)=−1√5ezy−2√5ezx⇒D→uh|(2,4,0)=−4√5−4√5=−8√55
解答:f(x,y)=2xy−12(x4+y4)+12⇒{fx=2y−2x3fy=2x−2y3⇒{fxx=−6x2fxy=2fyy=−6y2因此{fx=0fy=0⇒(a):臨界點(x,y)=(0,0),(1,1),(−1,−1)又{fxx(0,0)fyy(0,0)−(fxy(0,0))2=−4<0fxx(1,1)fyy(1,1)−(fxy(1,1))2=32>0fxx(−1,−1)fyy(−1,−1)−(fxy(−1,−1))2=32>0⇒(b):{(0,0)為鞍點(1,1)及(−1,−1)為相對極值點
解答:
沒有留言:
張貼留言