Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年9月4日 星期日

108年海洋大學轉學考-微積分詳解

國立臺灣海洋大學108學年度轉學生入學招生考試

考試科目:微積分
系組名稱:機械二、輪機能源二(G)、輪機動力二(G)、電機二(G)、資工二(B)、通訊二(B)、光電二(B)

解答(a)limx01exe2x1=limx0(ex1)(ex+1)(ex1)=limx01ex+1=12(b)limx2+(8x24xx2)=limx2+8x(x+2)x24=limx2+(x+4)(x2)(x+2)(x2)=limx2+(x+4)x+2=32(c)lim(x,y)(0,0)xyxy=lim(x,y)(0,0)(xy)(x+y)xy=lim(x,y)(0,0)(x+y)=0
解答(a)f(t)=3t+1tf(t)=3213t+11t3t+1t2=32t3t+13t+1t2(b)f(x)=ln3x22x+1=13(ln(x2)ln(2x+1))f(x)=13(1x222x+1)=53(x2)(2x+1)
解答f(x,y)=ycos(xy)f=(fx,fy)=(ysin(xy),cos(xy)+ysin(xy))f(0,π/3)=(π3sin(π3),cos(π3)+π3sin(π3))=(3π6,33π6)
解答u=PQ|PQ|=(2,4,0)(2)2+(4)2=(15,25,0)Duh=hu=(ezy,ezx,ezxy)(15,25,0)=15ezy25ezxDuh|(2,4,0)=4545=855
解答f(x,y)=2xy12(x4+y4)+12{fx=2y2x3fy=2x2y3{fxx=6x2fxy=2fyy=6y2{fx=0fy=0(a):(x,y)=(0,0),(1,1),(1,1){fxx(0,0)fyy(0,0)(fxy(0,0))2=4<0fxx(1,1)fyy(1,1)(fxy(1,1))2=32>0fxx(1,1)fyy(1,1)(fxy(1,1))2=32>0(b):{(0,0)(1,1)(1,1)

解答(a)π0(4x1/32sinx)dx=[3x4/3+2cosx]|π0=3π4/34(b){u=xdu=dxdv=sec2xdxv=tanxxsec2xdx=xtanxtanxdx=xtanxln|secx|+C(c)2x2+x+1x+x3dx=(1x+x+1x2+1)dx=1xdx+xx2+1dx+1x2+1dx=ln|x|+12ln(x2+1)+tan1x+C(d)u=3x+1du=3dx10x3x+1dx=41u13u13du=1941(u3/2u1/2)du=19[25u5/223u3/2]|41=19(2532238(2523))=116135(e)u=xdu=12xdx10lnxxdx=10ln(u2)2du=410lnudu=4[x(lnx1)]|10=4(f)sin(7x)cos(5x)=sin(5x+2x)cos(5x)=sin(5x)cos(2x)cos(5x)+cos2(5x)sin(2x)=12sin(10x)cos(2x)+12(cos(10x)+1)sin(2x)=12sin(12x)+12sin(2x)sin(7x)cos(5x)dx=12(sin(12x)+sin(2x))dx=124cos(12x)14cos(2x)+C
解答


y=1x2x=1y2=3/20(1y2)πdy3/20122πdy=(33838)π=34π
解答a0f(x)dx=a0f(ax)dxπ/20f(cosx)dx=π/20f(cos(π/2x))dx=π/20f(sin(x))dx
解答=32t=32exdx32=e3e2t=1e3e2

==================== END ===========================

未公告答案,解題僅供參考

沒有留言:

張貼留言