Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2022年9月1日 星期四

109年台聯大轉學考-工程數學詳解

臺灣聯合大學系統109學年度學士班轉學生聯合招生考試

科目名稱:工程數學
類組別:A5

解答(a)y+xy=xy1ydydx+xy2=xydydx=x(1y2)y1y2dy=xdx12ln|1y2|=12x2+C1ln|1y2|=x2+C21y2=C3ex2y=±1C3ex2,y(0)=3C3=8y=1+8ex2(b)y=xmy=mxm1y=m(m1)xm2x2y3xy+3y=0m(m1)xm3mxm+3x3=0(m24m+3)xm=0(m3)(m1)=0m=1,3yh=C1x+C2x3yh=C1+3C2x{y(1)=0y(0)=1yh{0=C1+C2C1=1{C1=1C2=1yh=xx3yp=Alnxyp=Axyp=Ax2x2yp3xyp+3yp=A3A+3Alnx=3lnx4A=1yp=lnxy=yh+ypy=xx3+lnx
解答yy=tL{y}L{y}=L{t}s2Y(s)sy(0)y(0)Y(s)=1ss2Y(s)s1Y(s)=1s(s21)Y(s)=s+1+1sY(s)=s2+s+1s(s21)=1s+121s+1+321s1y(t)=L1{Y}=L{1s}+12L{1s+1}+32L{1s1}=1+12et+32ety(t)=1+12et+32et
解答{m=1k=1F(t)=1t2/π2ky+F(t)=myy+y=1t2/π2y=C1cost+C2sintt2π2+1+2π2y=C1sint+C2cost2tπ2{y(0)=0y(0)=0{C1+1+2π2=0C2=0{C1=12/π2C2=0y+y=1t2/π2y(t)=(12/π2)sintt2/π2+1+2/π2
解答A=[2λ2321λ6120λ]det
解答(a)\;\cases{x(t)= a\cos^3t\\ y(t)= a\sin^3 t} \Rightarrow \cases{x'(t)= -3a\cos^2 t \sin t \\ y'(t)= 3a\sin^2t \cos t} \Rightarrow \cases{(x'(t))^2 = 9a^2\cos^4 t\sin^2 t\\ (y'(t))^2 = 9a^2\sin^4t \cos^2 t}\\ \Rightarrow \int_0^{\pi/2} \sqrt{(x'(t))^2 +(y'(t))^2}\,dt =\int_0^{\pi/2} \sqrt{9a^2\cos^2 t\sin^2t(\cos^2t+\sin^2t)}\,dt \\=\int_0^{\pi/2} \sqrt{9a^2\cos^2 t\sin^2t }\,dt =\int_0^{\pi/2} 3a\cos t\sin t\,dt =\int_0^{\pi/2} {3\over 2}a\sin (2t)\,dt =\left. \left[ -{3\over 4}a\cos (2t)\right]\right|_0^{\pi/2} \\ ={3\over 4}a +{3\over 4}a= \bbox[red, 2pt]{{3\over 2}a}\\ (b)\;f(x,y)=16x^2-y^2=399 \Rightarrow \nabla f=(f_x,f_y)= (32x,-2y) \Rightarrow \nabla f(1/8,1)=(4,-2)\\ \Rightarrow {(4,-2)\over \sqrt{4^2+2^2}} = \bbox[red, 2pt]{({2\over \sqrt 5},-{1\over \sqrt 5})}\\註:P不在surface 上,題目有誤?!\\(c)\;f=x^2+y^2+z^2 \Rightarrow \nabla f=(f_x,f_y,f_z)= (2x,2y,2z) \Rightarrow \nabla f(2,2,-1)= (4,4,-2)\\ \Rightarrow \nabla f(2,2,-1)\cdot \vec a =(4,4,-2)\cdot (1,1,3) = 4+4-6=\bbox[red, 2pt]2
解答\cases{A\vec x=\vec e_1\\ A\vec y=\vec e_n} \Rightarrow A\vec z=2\vec e_1+3\vec e_n =2A\vec x+ 3A\vec y \Rightarrow  \bbox[red, 2pt]{\vec z = 2\vec x+3\vec y}
解答\int_S \vec u\cdot \vec n\,dA = \int_V \nabla \cdot \vec u\,dV = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} ({\partial \over \partial x},{\partial \over \partial y},{\partial \over \partial z})\cdot (x,y,z)\,dxdydz\\ =  \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} 3\,dxdydz =\bbox[red, 2pt]3
解答依\text{d'Alembert's solution}, u_{tt}=c^2u_{xx}的通解為 u(x,t)=F(x+ct)+G(x-ct)\\ =F(x+t)+ G(x-t) = {1\over 2}(f(x+t)+f(x-t)) +{1\over 2}\int_{x-t}^{x+t} g(s)\,ds \\ ={1\over 2}(\sin(\pi(x+t))+ 3\sin(3\pi(x+t)) +\sin(\pi(x-t))+ 3\sin(3\pi(x-t))+ 0\\ \Rightarrow \bbox[red, 2pt]{u(x,t)= {1\over 2}(\sin(\pi(x+t))+ 3\sin(3\pi(x+t)) +\sin(\pi(x-t))+ 3\sin(3\pi(x-t))}
解答令u(x,t)= X(x)T(t) \Rightarrow \cases{u_t=XT'\\ u_{xx}=X''T} \Rightarrow u_t=u_{xx}-u \Rightarrow XT'=X''T-XT\\ \Rightarrow {T'\over T}={X''-X\over X} =k \Rightarrow k為一常數 \Rightarrow X''-(k+1)X=0\\ 原邊界條件\cases{u(0,t) = X(0)T(t)=0\\ u(1,t)= X(1)T(t)=0},若T(t)=0 \Rightarrow u(x,t)=0為明顯解,不討論;\\ 因此邊界條件變為X(1)=X(0)=0\\ \text{Case I: }k=-1 \Rightarrow  X''=0 \Rightarrow X= ax+b 代入邊介條件\Rightarrow\cases{X(1)=a+b=0\\ X(0)= b=0}\\ \qquad \Rightarrow X=0 \Rightarrow u(x,t)=0為明顯解,不討論\\ \text{Case II: }k>-1 \Rightarrow  X=C_1e^{\sqrt{k+1}x} +C_2e^{-\sqrt{k+1}x}代入邊介條件\\\qquad \Rightarrow\cases{X(1)=C_1e^{\sqrt{k+1}} +C_2e^{-\sqrt{k+1}}=0\\ X(0)= C_1+C_2=0} \Rightarrow C_1=C_2=0 \Rightarrow X=0 \Rightarrow u(x,t)=0為明顯解,不討論\\ \text{Case III: }k<-1,假設k+1= -\mu^2 \Rightarrow X=A \cos \mu x+ B\sin \mu x 代入邊界條件 \Rightarrow \cases{A\cos \mu +B\sin\mu =0\\ A=0}\\\qquad \Rightarrow \cases{A=B=0 \Rightarrow 明顯解,不討論\\ A=0且\sin \mu =0} \Rightarrow \sin u=0  \Rightarrow u=n\pi \Rightarrow X_n(x)= \sin n\pi x, n\in \mathbb{N}\\接著求{T'\over T}=k \Rightarrow T'-kT=0 \Rightarrow T'+(u^2+1)T=0 \Rightarrow T(t)= A e^{-(u^2+1)t} \Rightarrow T_n(t)= A_ne^{-(n^2\pi^2+1)t}\\ \Rightarrow u(x,t)= A_ne^{-(n^2\pi^2+1)t} \sin (n\pi x);再將初始條件u(x,0)=\sin(\pi x) \Rightarrow A_n\sin (n\pi x)= \sin(\pi x)\\ \Rightarrow \cases{A_1=1\\ A_m=0,m\ge 2} \Rightarrow \bbox[red, 2pt]{u(x,t)=e^{-( \pi^2+1)t} \sin (\pi x)}


==================== END ===========================

未公告答案,解題僅供參考

沒有留言:

張貼留言