Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2022年9月17日 星期六

108年宜蘭大學轉學考-微積分詳解

國立宜蘭大學108學年度暑假轉學招生考試微積分試題

解答limt0tantsec2t3t=limt0sint3tcostcos(2t)=limt02sint3t(cos(3t)+cost)=limt0(2sint)(3t(cos(3t)+cost))=limt02cost3(cos(3t)+cost)3t(3sin(3t)+sin(t))=26=13(C)
解答f(x)=x4x+4=18x+4f(x)=8(x+4)2f(3)=849(B)
解答limx3x+22x2+1=limx3+2/x2+1/x2=32(C)
解答f(x)=x33x224x+2f(x)=3x26x24f
解答g(2)=2^3 = a\cdot 2^2 \Rightarrow a=2,故選\bbox[red, 2pt]{(E)}
解答\int_0^{\pi/4} \int_0^{\cos \theta} 3r^2 \sin \theta \,drd\theta =\int_0^{\pi/4} \cos^3\theta \sin \theta \,d\theta =\int_1^{\sqrt 2/2} -u^3\,du (取u=\cos\theta \Rightarrow du=-\sin\theta d\theta) \\ =\left.\left[ -{1\over 4}u^4 \right] \right|_1^{\sqrt 2/2} =-{1\over 16}+{1\over 4} ={3\over 16},故選\bbox[red, 2pt]{(D)}
解答取\cases{u=x \Rightarrow du=dx\\ dv=e^{-x/2}dx \Rightarrow v=-2e^{-x/2}} \Rightarrow \int_0^4 xe^{-x/2}\,dx = \left.\left[ -2xe^{-x/2} \right]\right|_0^4 +2\int_0^4 e^{-x/2}\,dx\\ =\left.\left[ -2xe^{-x/2} -4e^{-x/2}\right]\right|_0^4 =-12e^{-2}+4,故選\bbox[red, 2pt]{(B)}
解答取\cases{u=x \Rightarrow du=dx\\ dv=\cos xdx \Rightarrow v=\sin x} \Rightarrow \int_0^{\pi/2} x\cos x\,dx = \left.\left[ x\sin x \right]\right|_0^{\pi/2} -\int_0^{\pi/2} \sin x\,dx\\ =\left.\left[ x\sin x+\cos x\right]\right|_0^{\pi /2} ={\pi \over 2}-1,故選\bbox[red, 2pt]{(C)}
解答\int_0^2 \int_0^{\sqrt{2x-x^2}} xy\,dydx =\int_0^2 {1\over 2}x(2x-x^2)\,dx =\left.\left[ {1\over 3}x^3 - {1\over 8}x^4\right] \right|_0^2 ={8\over 3}-2={2\over 3},故選\bbox[red, 2pt]{(D)}
解答\sum_{n=1}^\infty {2\over 4n^2-1} =\sum_{n=1}^\infty {2\over (2n-1)(2n+1)} =\sum_{n=1}^\infty \left({1\over 2n-1}-{1\over 2n+1} \right)\\ = (1-{1\over 3}) +({1\over 3}-{1\over 5}) +({1\over 5}-{1\over 7}) +\cdots  =1,故選\bbox[red, 2pt]{(C)}

========================== END ========================

解題僅供參考,其它轉學考試題及詳解

沒有留言:

張貼留言