台灣聯合大學系統108學年度學士班轉學生考試
科目:工程數學
一、計算題
解答:sinxcosydx+cosxsinydy=0⇒∫−sinxcosxdx=∫sinycosydy⇒lncosx=ln1cosy+C1⇒cosx=C2cosy⇒cosxcosy=C,C為常數解答:y″+4y′+(π2+4)y=0⇒特徵方程式λ2+4λ+(π2+4)=0⇒λ=−2±πi⇒y=e−2x(C1cosπx+C2sin(πx))⇒y′=e−2x((−2C1+πC2)cosπx−(2C2+πC1)sin(πx)),代入初始值{y(1/2)=1y′(1/2)=−2⇒{e−1C2=1e−1(2C2+πC1)=−2⇒{C1=eC2=0⇒y=e1−2xsin(πx)
解答:Ldidt+Ri+1C∫t0i(τ)dτ=E(t)⇒Ld2idt2+Rdidt+iC=E′(t)⇒10i″+10i′+100i=100cost⇒i″+i′+10i=10cost⇒{ih=e−t/2(C1cos(√39t/2)+C2sin(√39t/2))ip=sint−cost⇒i=e−t/2(C1cos(√39t/2)+C2sin(√39t/2))+sint−cost
二、計算題
解答:(−1121003−11010−134001)3R1+R2→R2−R2+R3→(1−1−2−100027310022−101)R2÷2→(1−1−2−100017232120022−101)R2+R1→R1−2R2+R3→R3→(103/21/2−1/2001723212000−5−4−11)R3÷(−5)→(103/21/2−1/200172321200014/51/51/5)−3R3/2+R1→R1−7R3/2+R2→R2→(100−71015310010−1310−157100014515−15)⇒A−1=(−71015310−1310−157104515−15)解答:det
解答:假設可逆矩陣A的特徵值中,有一個\lambda_i=0,i\in [1,n] ; \\依特徵值定義, A\mathbf v= \lambda_i\mathbf v=0 \Leftrightarrow A^{-1}A\mathbf v= A^{-1}0\Leftrightarrow \mathbf v=0矛盾(\because 特徵向量不得為0)\\ 因此可逆矩陣的特徵值均不等為0;\\ 對所有可逆矩陣A的特徵值\lambda_i,i\in [1,n],我們有A\mathbf v= \lambda_i\mathbf v \Rightarrow A^{-1}A\mathbf v= A^{-1} \lambda_i\mathbf v \Rightarrow A^{-1}\mathbf v={1\over \lambda_i} \mathbf v\\ \Rightarrow {1\over \lambda_i}為 A^{-1}的特徵值,\bbox[red, 2pt]{故得證}
三、計算題
解答:\mathbf{1.}\;\vec F=(x^2+y^2+z^2)^n(x\vec i+ y\vec j+z\vec k) = (x(x^2+y^2+z^2)^n, y(x^2+y^2+z^2)^n,z(x^2+y^2+z^2)^n)\\ \Rightarrow \nabla \cdot \vec F =({\partial \over \partial x}, {\partial \over \partial y}, {\partial \over \partial z}) \cdot (x(x^2+y^2+z^2)^n, y(x^2+y^2+z^2)^n,z(x^2+y^2+z^2)^n) \\ ={\partial \over \partial x}\left(x(x^2+y^2+z^2)^n \right)+ {\partial \over \partial y}\left( y(x^2+y^2+z^2)^n\right)+{\partial \over \partial z}\left( z(x^2+y^2+z^2)^n\right)\\ = 3(x^2+y^2+z^2)^n+ 2n(x^2+y^2+z^2)^{n-1} (x^2+y^2+z^2)= \bbox[red, 2pt]{(2n+3)(x^2+y^2+z^2)^n}\\ \mathbf{2.}\;\nabla \times \vec F=\begin{vmatrix}\vec i & \vec j &\vec k\\ {\partial \over \partial x} &{\partial \over \partial y} &{\partial \over \partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} =\begin{vmatrix}\vec i & \vec j &\vec k\\ {\partial \over \partial x} &{\partial \over \partial y} &{\partial \over \partial z} \\ x(x^2+y^2+z^2)^n & y(x^2+y^2+z^2)^n & z(x^2+y^2+z^2)^n \end{vmatrix} \\ =\bbox[red,2pt]{\vec 0}\\ \mathbf{3.}\; \vec F=-\nabla \phi \Rightarrow \cases{\phi_1= -\int F_1\,dx\\ \phi_2= -\int F_2\,dy\\ \phi_3= -\int F_3\,dz } \Rightarrow \phi_1=\phi_2 =\phi_3 = -{1\over 2(n+1)}(x^2+y^2+z^2) ^{n+1}\\ \Rightarrow \phi =\bbox[red, 2pt]{ -{1\over 2(n+1)}(x^2+y^2+z^2) ^{n+1}(\vec i+ \vec j+ \vec k)}解答:平面E:x+2y+2z=12的法向量為\vec n=(1,2,2) \Rightarrow \cos \theta ={\vec n\cdot (0,0,1)\over |\vec n||(0,0,1)|} ={2\over 3}, \theta 為E與z軸的角度\\ 圓柱體:x^2+y^2=16在xy-平面投影的圓面積=16\pi \Rightarrow 在第一象限的面積=4\pi \\ \Rightarrow 在E上的面積=4\pi \div \cos\theta =\bbox[red, 2pt]{6\pi}
======================= END =======================
解題僅供參考,其他轉學考試題及詳解
沒有留言:
張貼留言