臺灣綜合大學系統111學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D09
解答:y′+y=y2⇒∫1y2−ydy=∫1dx⇒∫(1y−1−1y)dy=x+C1⇒ln|y−1|−ln|y|=x+C1⇒ln|y−1y|=ln|1−1y|=x+C1⇒1−1y=ex+C1=C2ex⇒1y=1−C2ex⇒y=11−C2ex,C2為常數
解答:2xydy=(x2+y2)dx⇒dydx=x2y+y2x,因此假設u=yx⇒y=ux⇒y′=u′x+u代回原式⇒u′x+u=12u+u2⇒u′x=12u−u2=1−u22u⇒∫2u1−u2du=∫1xdx⇒−ln(1−u2)=lnx+C1=lnC2x⇒11−u2=C2x⇒u2=y2x2=1−1C2x⇒y2=x2−C3x⇒x2+y2=Cx,C為常數解答:cos(πx)cos(2πy)dx=2sin(πx)sin(2πy)dy⇒cos(πx)sin(πx)dx=2sin(2πy)cos(2πy)dy⇒∫cos(πx)sin(πx)dx=2∫sin(2πy)cos(2πy)dy⇒1πln(sin(πx))=−1πln(cos(2πy))+C1=1πln1C2cos(2πy)⇒sin(πx)=1C2cos(2πy)⇒C2sin(πx)cos(2πy)=1將初始值y(32)=12代入上式⇒C2sin3π2cos(π)=1⇒C2=1⇒sin(πx)cos(2πy)=1
解答:acosx+bsinx+c=0⇒{x=0⇒a+c=0x=π/2⇒b+c=0x=π⇒−a+c=0⇒a=b=c=0⇒cosx,sinx,1為線性獨立
解答:y‴−y′=10cos(2x)⇒λ3−λ=0⇒λ=0,±1⇒yh=C1+C2ex+C3e−x令yp=Acos(2x)+Bsin(2x)⇒y′p=−2Asin(2x)+2Bcos(2x)⇒y″p=−4Acos(2x)−4Bsin(2x)⇒y‴p=8Asin(2x)−8Bcos(2x)⇒y‴p−y′p=10Asin(2x)−10Bcos(2x)=10cos(2x)⇒{A=0B=−1⇒yp=−sin(2x)⇒y=yh+yp⇒y=C1+C2ex+C3e−x−sin(2x)
解答:y(t)=1+∫t0y(τ)dτ⇒L{y(t)}=L{1+∫t0y(τ)dτ}⇒Y(s)=1s+Y(s)s⇒(s−1s)Y(s)=1s⇒Y(s)=1s−1⇒y(t)=L−1{1s−1}=et⇒y(t)=et
解答:A=[0110]⇒det
解答:\mathbf{(1)}\;\vec V= yz\vec i+ zx\vec j+xy\vec k \Rightarrow div \vec F={\partial \over \partial x}yz +{\partial \over \partial y}zx + {\partial \over \partial z}xy =\bbox[red, 2pt]0 \\ \mathbf{(2)}\; \text{curl }\vec F =\begin{vmatrix} \vec i & \vec j & \vec k\\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ yz & zx & xy \end{vmatrix} =x\vec i+y\vec j+z\vec k -x\vec i-y\vec j-z\vec k = \bbox[red,2pt]{\vec 0}
解答:E=\{(x,y,z)\mid x^2+y^2\le 4, x\ge 0,y \ge 0, |z| \le 1\} \Rightarrow \iint_S \mathbf F\cdot \vec n\,dA = \iiint_E \text{div }\mathbf F\,dV\\ =\iint_S \mathbf F\cdot \vec n\,dA = \iiint_E x^2\,dV\\ = \int_0^{\pi/2} \int_0^2 \int_{-1}^1 r^2\cos^2\theta r\,dzdrd\theta = \int_0^{\pi/2} \int_0^2 2r^3\cos^2\theta \, drd\theta = \int_0^{\pi/2} 8\cos^2 \theta\, d\theta \\ =4\int_0^{\pi /2} \cos(2\theta)+1\,d\theta =\bbox[red, 2pt]{2\pi}
========================== END ============================
解題僅供參考,其他轉學考試題及詳解
沒有留言:
張貼留言