Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2022年9月28日 星期三

111年台綜大轉學考-工程數學D09詳解

臺灣綜合大學系統111學年度學士班轉學生聯合招生考試

科目名稱:工程數學
類組代碼:D09

解答y+y=y21y2ydy=1dx(1y11y)dy=x+C1ln|y1|ln|y|=x+C1ln|y1y|=ln|11y|=x+C111y=ex+C1=C2ex1y=1C2exy=11C2ex,C2
解答2xydy=(x2+y2)dxdydx=x2y+y2xu=yxy=uxy=ux+uux+u=12u+u2ux=12uu2=1u22u2u1u2du=1xdxln(1u2)=lnx+C1=lnC2x11u2=C2xu2=y2x2=11C2xy2=x2C3xx2+y2=Cx,C
解答cos(πx)cos(2πy)dx=2sin(πx)sin(2πy)dycos(πx)sin(πx)dx=2sin(2πy)cos(2πy)dycos(πx)sin(πx)dx=2sin(2πy)cos(2πy)dy1πln(sin(πx))=1πln(cos(2πy))+C1=1πln1C2cos(2πy)sin(πx)=1C2cos(2πy)C2sin(πx)cos(2πy)=1y(32)=12C2sin3π2cos(π)=1C2=1sin(πx)cos(2πy)=1
解答acosx+bsinx+c=0{x=0a+c=0x=π/2b+c=0x=πa+c=0a=b=c=0cosx,sinx,1
解答yy=10cos(2x)λ3λ=0λ=0,±1yh=C1+C2ex+C3exyp=Acos(2x)+Bsin(2x)yp=2Asin(2x)+2Bcos(2x)yp=4Acos(2x)4Bsin(2x)yp=8Asin(2x)8Bcos(2x)ypyp=10Asin(2x)10Bcos(2x)=10cos(2x){A=0B=1yp=sin(2x)y=yh+ypy=C1+C2ex+C3exsin(2x)
解答y(t)=1+t0y(τ)dτL{y(t)}=L{1+t0y(τ)dτ}Y(s)=1s+Y(s)s(s1s)Y(s)=1sY(s)=1s1y(t)=L1{1s1}=ety(t)=et
解答A=[0110]det
解答\mathbf{(1)}\;\vec V= yz\vec i+ zx\vec j+xy\vec k \Rightarrow div \vec F={\partial \over \partial x}yz +{\partial \over \partial y}zx + {\partial \over \partial z}xy =\bbox[red, 2pt]0 \\ \mathbf{(2)}\; \text{curl }\vec F =\begin{vmatrix} \vec i & \vec j & \vec k\\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ yz & zx & xy \end{vmatrix} =x\vec i+y\vec j+z\vec k -x\vec i-y\vec j-z\vec k = \bbox[red,2pt]{\vec 0}
解答E=\{(x,y,z)\mid x^2+y^2\le 4, x\ge 0,y \ge 0, |z| \le 1\} \Rightarrow \iint_S \mathbf F\cdot \vec n\,dA = \iiint_E \text{div }\mathbf F\,dV\\ =\iint_S \mathbf F\cdot \vec n\,dA = \iiint_E x^2\,dV\\ = \int_0^{\pi/2} \int_0^2 \int_{-1}^1 r^2\cos^2\theta r\,dzdrd\theta = \int_0^{\pi/2} \int_0^2 2r^3\cos^2\theta  \, drd\theta = \int_0^{\pi/2} 8\cos^2 \theta\, d\theta \\ =4\int_0^{\pi /2} \cos(2\theta)+1\,d\theta =\bbox[red, 2pt]{2\pi}

========================== END ============================

解題僅供參考,其他轉學考試題及詳解

沒有留言:

張貼留言