Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2022年9月16日 星期五

109年台北大學轉學考-微積分詳解

國立臺北大學109學年度日間學士班暨進修學士班轉學生招生考試

學制系級:通訊工程資、訊工程日間學士班2年級
科目:微積分

解答{f(x,y)=x2+2y2g(x,y)=x2+y21{fx=λgxfy=λgyg=0{2x=λ(2x)(1)4y=λ(2y)(2)x2+y2=1(3)(1)(2)x2y=xyxy=0x=0y=0(3)(x,y)={A(0,1)B(0,1)C(1,0)D(1,0){f(A)=f(B)=2f(C)=f(D)=1:12
解答xy=yxeylnx=exlny(eylnx)=(exlny)yxeylnx=(lny+xyy)exlnyyxxy=(lny+xyy)yxxyy=yxxyyxlny=xy1yx1lnyy=(xy1yx1lny)yx=xy2yx2lnyyx
解答

y=e1/(x+1)(a)domain D={xx1,xR}(b)y(0)=e1y=1/e;e1/(x+1)0,xx(c){lim
解答\mathbf{(a)}\;令u=\sqrt x \Rightarrow du ={1\over 2\sqrt x}dx ={1\over 2u}dx \Rightarrow dx=2udu \Rightarrow \int_0^1{\sqrt x\over x+1}\,dx = \int_0^1 {2u^2\over u^2+1}du\\ =\int_0^1 \left(2-{2\over u^2+1} \right)\,du =\left. \left[ 2u-2\tan^{-1} u  \right] \right|_0^1 = \bbox[red, 2pt]{2-{\pi \over 2}} \\\mathbf{(b)}\;令\cases{u=\ln x \Rightarrow du ={1\over x}dx\\ dv={1\over x^2}dx \Rightarrow v=-{1\over x}} \Rightarrow \int_0^\infty {\ln x\over x^2}\,dx = \left.\left[-{1\over x}\ln x \right]\right|_0^\infty +\int_0^\infty {1\over x^2}\,dx \\ = \left.\left[-{1\over x}\ln x -{1\over x}\right]\right|_0^\infty  \to \bbox[red, 2pt]{-\infty}
解答

\mathbf{(a)}\;繞y=2旋轉體積= \pi\int_0^4 (2-\sqrt x)^2\,dx =\bbox[red,2pt]{8\pi \over 3} \\\mathbf{(b)}\;繞x=4旋轉體積= \pi\int_0^2 (4-y^2)^2\,dy = \bbox[red, 2pt]{256\pi \over 15}
解答\mathbf{(a)}\;f(t)={1\over \sqrt{1-t^2}} \Rightarrow f'(t)={t \over (1-t^2)^{3/2}} \Rightarrow f''(t)= {2t^2+1 \over (1-t^2)^{5/2}} \Rightarrow f'''(t)= {6t^3+9t \over (1-t^2)^{7/2}}\\ \Rightarrow f^{[4]}(t) = {24t^4 +72t^2+ 9 \over (1-t^2)^{9/2}} \Rightarrow f^{[5]}(t) = { 15t(8t^4+ 40t^2+ 15)\over (1-t^2)^{11/2}} \Rightarrow f^{[6]} ={45( 16t^6 +120t^4 + 90t^2+5)\over (1-t^2)^{13/2}}\\ \Rightarrow \cases{f(0)=1\\ f^{[奇數]}(0)=0 \\ f''(0)=1\\ f^{[4]}(0)= 9\\ f^{[6]}(0)= 225 }\Rightarrow \text{Maclaurin series =} \sum_{n=0}^\infty f^{[n]}(0){t^n \over n!}= \bbox[red, 2pt]{1+ {1\over 2}t^2 +{3\over 8}t ^4 +{5\over 16}t^6}+\cdots \\\mathbf{(b)}\; g(x)=\sin^{-1} x=\int_0^x {1\over \sqrt{1-t^2}}\,dt \Rightarrow \cases{g(0)=0\\ g'(x)=f(x) }\\\ \Rightarrow \text{Maclaurin series =} \sum_{n=0}^\infty g^{[n]}(0){t^n \over n!}=  f(0)x +{1\over 3!}f''(0)x^3 +{1\over 5!}f^{[4]}x^5  +{1\over 7!}f^{[6]}x^7+\cdots \\= \bbox[red, 2pt]{x+ {1\over 6}x^3 +{3\over 40}x^5 +{5\over 112}x^7}+\cdots
 =============== END ===================

解題僅供參考,其它轉學考試題及詳解

沒有留言:

張貼留言