國立臺北大學109學年度日間學士班暨進修學士班轉學生招生考試
學制系級:通訊工程資、訊工程日間學士班2年級
科目:微積分
解答:令{f(x,y)=x2+2y2g(x,y)=x2+y2−1⇒{fx=λgxfy=λgyg=0⇒{2x=λ(2x)⋯(1)4y=λ(2y)⋯(2)x2+y2=1⋯(3)(1)(2)⇒x2y=xy⇒xy=0⇒x=0或y=0代入(3)⇒(x,y)={A(0,1)B(0,−1)C(1,0)D(−1,0)⇒{f(A)=f(B)=2f(C)=f(D)=1⇒極值為:1及2解答:xy=yx⇒eylnx=exlny⇒(eylnx)′=(exlny)′⇒yxeylnx=(lny+xy′y)exlny⇒yx⋅xy=(lny+xy′y)yx⇒xy′y=yx⋅xyyx−lny=xy−1yx−1−lny⇒y′=(xy−1yx−1−lny)⋅yx=xy−2yx−2−lny⋅yx
解答:
y=e−1/(x+1)(a)domain D={x∣x≠−1,x∈R}(b)y(0)=e−1⇒y截距=1/e;e−1/(x+1)≠0,∀x⇒無x截距(c){limx→∞y=1limy→∞x=−1⇒漸近線為y=1與x=−1(d)在兩區間(−∞,−1)及(1,∞),圖形為遞增;(e)y′=1(x+1)2e−1/(x+1)≠0,∀x⇒無局部極大值或局部極小值(f)y″=−2(x+1)3e−1/(x+1)+1(x+1)4e−1/(x+1)⇒{y″>0,x<−1y″<0,x>−1⇒{凹向上,x<−1凹向下,x>−1(g)f″(x)≠0⇒無反曲點(h)圖形如上,不含(−1,0)
解答:(a)令u=√x⇒du=12√xdx=12udx⇒dx=2udu⇒∫10√xx+1dx=∫102u2u2+1du=∫10(2−2u2+1)du=[2u−2tan−1u]|10=2−π2(b)令{u=lnx⇒du=1xdxdv=1x2dx⇒v=−1x⇒∫∞0lnxx2dx=[−1xlnx]|∞0+∫∞01x2dx=[−1xlnx−1x]|∞0→−∞
解答:
(a)繞y=2旋轉體積=π∫40(2−√x)2dx=8π3(b)繞x=4旋轉體積=π∫20(4−y2)2dy=256π15
解答:(a)f(t)=1√1−t2⇒f′(t)=t(1−t2)3/2⇒f″(t)=2t2+1(1−t2)5/2⇒f‴(t)=6t3+9t(1−t2)7/2⇒f[4](t)=24t4+72t2+9(1−t2)9/2⇒f[5](t)=15t(8t4+40t2+15)(1−t2)11/2⇒f[6]=45(16t6+120t4+90t2+5)(1−t2)13/2⇒{f(0)=1f[奇數](0)=0f″(0)=1f[4](0)=9f[6](0)=225⇒Maclaurin series =∞∑n=0f[n](0)tnn!=1+12t2+38t4+516t6+⋯(b)g(x)=sin−1x=∫x01√1−t2dt⇒{g(0)=0g′(x)=f(x) ⇒Maclaurin series =∞∑n=0g[n](0)tnn!=f(0)x+13!f″(0)x3+15!f[4]x5+17!f[6]x7+⋯=x+16x3+340x5+5112x7+⋯
=============== END ===================
=============== END ===================
解題僅供參考,其它轉學考試題及詳解
沒有留言:
張貼留言