國立臺北大學109學年度日間學士班暨進修學士班轉學生招生考試
學制系級:通訊工程資、訊工程日間學士班2年級
科目:微積分
解答:令{f(x,y)=x2+2y2g(x,y)=x2+y2−1⇒{fx=λgxfy=λgyg=0⇒{2x=λ(2x)⋯(1)4y=λ(2y)⋯(2)x2+y2=1⋯(3)(1)(2)⇒x2y=xy⇒xy=0⇒x=0或y=0代入(3)⇒(x,y)={A(0,1)B(0,−1)C(1,0)D(−1,0)⇒{f(A)=f(B)=2f(C)=f(D)=1⇒極值為:1及2解答:xy=yx⇒eylnx=exlny⇒(eylnx)′=(exlny)′⇒yxeylnx=(lny+xy′y)exlny⇒yx⋅xy=(lny+xy′y)yx⇒xy′y=yx⋅xyyx−lny=xy−1yx−1−lny⇒y′=(xy−1yx−1−lny)⋅yx=xy−2yx−2−lny⋅yx
解答:
y=e−1/(x+1)(a)domain D={x∣x≠−1,x∈R}(b)y(0)=e−1⇒y截距=1/e;e−1/(x+1)≠0,∀x⇒無x截距(c){lim
解答:\mathbf{(a)}\;令u=\sqrt x \Rightarrow du ={1\over 2\sqrt x}dx ={1\over 2u}dx \Rightarrow dx=2udu \Rightarrow \int_0^1{\sqrt x\over x+1}\,dx = \int_0^1 {2u^2\over u^2+1}du\\ =\int_0^1 \left(2-{2\over u^2+1} \right)\,du =\left. \left[ 2u-2\tan^{-1} u \right] \right|_0^1 = \bbox[red, 2pt]{2-{\pi \over 2}} \\\mathbf{(b)}\;令\cases{u=\ln x \Rightarrow du ={1\over x}dx\\ dv={1\over x^2}dx \Rightarrow v=-{1\over x}} \Rightarrow \int_0^\infty {\ln x\over x^2}\,dx = \left.\left[-{1\over x}\ln x \right]\right|_0^\infty +\int_0^\infty {1\over x^2}\,dx \\ = \left.\left[-{1\over x}\ln x -{1\over x}\right]\right|_0^\infty \to \bbox[red, 2pt]{-\infty}
解答:
\mathbf{(a)}\;繞y=2旋轉體積= \pi\int_0^4 (2-\sqrt x)^2\,dx =\bbox[red,2pt]{8\pi \over 3} \\\mathbf{(b)}\;繞x=4旋轉體積= \pi\int_0^2 (4-y^2)^2\,dy = \bbox[red, 2pt]{256\pi \over 15}
解答:\mathbf{(a)}\;f(t)={1\over \sqrt{1-t^2}} \Rightarrow f'(t)={t \over (1-t^2)^{3/2}} \Rightarrow f''(t)= {2t^2+1 \over (1-t^2)^{5/2}} \Rightarrow f'''(t)= {6t^3+9t \over (1-t^2)^{7/2}}\\ \Rightarrow f^{[4]}(t) = {24t^4 +72t^2+ 9 \over (1-t^2)^{9/2}} \Rightarrow f^{[5]}(t) = { 15t(8t^4+ 40t^2+ 15)\over (1-t^2)^{11/2}} \Rightarrow f^{[6]} ={45( 16t^6 +120t^4 + 90t^2+5)\over (1-t^2)^{13/2}}\\ \Rightarrow \cases{f(0)=1\\ f^{[奇數]}(0)=0 \\ f''(0)=1\\ f^{[4]}(0)= 9\\ f^{[6]}(0)= 225 }\Rightarrow \text{Maclaurin series =} \sum_{n=0}^\infty f^{[n]}(0){t^n \over n!}= \bbox[red, 2pt]{1+ {1\over 2}t^2 +{3\over 8}t ^4 +{5\over 16}t^6}+\cdots \\\mathbf{(b)}\; g(x)=\sin^{-1} x=\int_0^x {1\over \sqrt{1-t^2}}\,dt \Rightarrow \cases{g(0)=0\\ g'(x)=f(x) }\\\ \Rightarrow \text{Maclaurin series =} \sum_{n=0}^\infty g^{[n]}(0){t^n \over n!}= f(0)x +{1\over 3!}f''(0)x^3 +{1\over 5!}f^{[4]}x^5 +{1\over 7!}f^{[6]}x^7+\cdots \\= \bbox[red, 2pt]{x+ {1\over 6}x^3 +{3\over 40}x^5 +{5\over 112}x^7}+\cdots
=============== END ===================
=============== END ===================
解題僅供參考,其它轉學考試題及詳解
沒有留言:
張貼留言