2022年9月18日 星期日

108年台聯大轉學考-微積分A3A4A7詳解

台灣聯合大學系統108學年度學士班轉學生考試

科目:微積分
類組別:A3 A4 A7
甲、填充題:共8題,每題8分,共64分

解答:$$\lim_{x\to 0^+}(\sin x)^x =\lim_{x\to 0^+}e^{x\ln (\sin x)} = e^0=\bbox[red, 2pt]{1}$$
解答:$$f(x)= \int_1^x \sqrt{1+t^2}\,dt \Rightarrow \cases{f(1)=0\\ f'(x)= \sqrt{1+x^2}} \Rightarrow f'(1)=\sqrt 2\\f^{-1}(f(x))=x \Rightarrow (f^{-1}(f(x)))'=(x)' \Rightarrow (f^{-1})'(f(x))f'(x)=1 \\\Rightarrow (f^{-1})'(f(x))={1\over f'(x)} \Rightarrow (f^{-1})'(0 )={1\over f'(1)} ={1\over \sqrt 2} =\bbox[red,2pt]{\sqrt 2\over 2}$$
解答:$$\int_0^1 \int_0^x e^{-x^2}\,dydx =\int_0^1 xe^{-x^2}\,dx =\left.\left[ -{1\over 2}e^{-x^2}\right] \right|_0^1 = {1\over 2} (1-e^{-1}) \\ \Rightarrow 平均值={{1\over 2} (1-e^{-1}) \over R面積} =\bbox[red, 2pt]{ 1-e^{-1}}$$
解答:$$u=1+\sqrt x \Rightarrow du ={1\over 2\sqrt x}dx \Rightarrow \int_1^9 {1\over \sqrt x(1+\sqrt x)^2}\,dx =\int_2^4 {2\over u^2 }\,du = \left. -{2\over u}\right|_2^4 =-{1\over 2}+1 =\bbox[red, 2pt]{1\over 2}$$
解答:$$f(x,y)= x^2y + e^{xy} \Rightarrow \nabla f=(f_x,f_y)=(2xy+ye^{xy}, x^2+xe^{xy}) \Rightarrow \nabla f(1,0)=(0,2)\\ \Rightarrow \vec u={\nabla f(1,0)\over |\nabla f(1,0)|}=(0,1) \Rightarrow D_{\vec u} f(1,0)最大值=|\nabla f(1,0)|= \bbox[red, 2pt]2$$
解答:$$\cases{f=x^2+ 2y^2-2x+3 \\ g=x^2+y^2-10} \Rightarrow \cases{f_x=\lambda g_x\\ f_y= \lambda g_y\\ g=0} \Rightarrow \cases{2x-2=\lambda (2x) \cdots(1)\\ 4y=\lambda (2y) \cdots(2)\\ x^2+y^2=10 \cdots(3)} \\ {(1)\over (2)} \Rightarrow {x-1\over 2y}={x\over y} \Rightarrow xy-y=2xy \Rightarrow y(x+1)=0 \Rightarrow \cases{x=-1 \Rightarrow y=\pm 3\\ y=0 \Rightarrow x=\pm \sqrt{10}} \\ \Rightarrow 臨界點\cases{A(-1,3)\\ B(-1,-3)\\ C(\sqrt{10},0)\\ D(-\sqrt{10},0)} \Rightarrow \cases{f(A)=f(B)= 24\\ f(C)=13-2\sqrt{10} \\ f(D)= 13+2\sqrt{10}} \Rightarrow 最大值為\bbox[red,2pt]{24}$$
解答:$$r(t)= (e^t\cos t)\vec i+ (e^t\sin t)\vec j,\text{ from }(1,0)\to (e^{2\pi},0); 相當於t=0\to 2\pi \\ 又r'(t)= e^t(\cos t- \sin t)\vec i+e^t(\sin t+ \cos t)\vec j\\ \cases{x=e^t\cos t\\ y=e^t\sin t} \Rightarrow x^2+y^2 = e^{2t} \Rightarrow \vec F ={1\over (x^2+y^2)^{3/2}}(x\vec i+ y\vec j) = {1\over  e^{3t}}(e^t\cos t\vec i+e^t \sin t\vec j) \\ = {1\over  e^{2t}}( \cos t\vec i+ \sin t\vec j) \Rightarrow 作功= \int_C \vec F\cdot d\vec r = \int_0^{2\pi} \vec F(r(t)) \cdot r'(t)\,dt\\ =\int_0^{2\pi} {1\over e^{2t}}( \cos t\vec i+ \sin t\vec j) \cdot (e^t(\cos t- \sin t)\vec i+e^t(\sin t+ \cos t)\vec j)\\ =\int_0^{2\pi} {1\over e^{t}}dt =\left.\left[ -e^{-t} \right] \right|_0^{2\pi} = \bbox[red, 2pt]{1- e^{-2\pi}}$$
解答

$$\int_0^{2\pi} \int_0^{\sqrt 2} \int_r^{\sqrt{4-r^2}} 3\,dz\,r\,dr\,d\theta \Rightarrow  r\le z\le \sqrt{4-r^2} \Rightarrow x^2+y^2 \le z^2 \le 4-(x^2+y^2)\\ \Rightarrow 積分區域為半球(x^2+y^2+z^2=4)與圓錐(x^2+y^2=z^2)之間的空間,見上圖\\ 因此以球坐標表示為 \bbox[red, 2pt]{\int_0^{2\pi } \int_0^{\pi/4} \int_0^2 3\rho^2 \sin \phi\,d\rho d\phi d\theta}$$

乙、計算、證明題:共3題,每題12分,共36分

解答:$$\mathbf{a.}\; \lim_{n\to \infty}\left| {a_{n+1}\over a_n}\right| =\lim_{n\to \infty}\left| {e^{-(n+1)^2} \over e^{-n^2}}\right|
=\lim_{n \to \infty} \left| {e^{n^2} \over e^{(n+1)^2}}\right| =\lim_{n \to \infty} \left| {1 \over e^{2n+1}}\right| =0 \Rightarrow \bbox[red, 2pt]{收斂} \\\mathbf{b.}\;\lim_{n\to \infty}{\sin(1/n)\over 1/n} =\lim_{n\to \infty}{(\sin(1/n))'\over (1/n)'} =\lim_{n\to \infty}{(1/n)'\cos(1/n)\over (1/n)'} =\lim_{n\to \infty} \cos(1/n)=1\\ 由於\sum_{n=1}^\infty {1\over n}發散,因此\sum_{n=1}^\infty \sin{1\over n}\bbox[red, 2pt]{發散}(極限比較審斂法)$$
解答:$$g'(0)=\lim_{x\to 0} {g(x)-g(0)\over x-0} =\lim_{x\to 0} {x^2\sin{1\over x}-0\over x } =\lim_{x\to 0} x\sin {1\over x}\\ 由於-|x|\le x\sin{1\over x}\le |x| \Rightarrow \lim_{x\to 0}-|x|\le \lim_{x\to 0} x\sin{1\over x}\le \lim_{x\to 0} |x| \\ \Rightarrow 0\le \lim_{x\to 0} x\sin{1\over x}\le 0 \Rightarrow \lim_{x\to 0} x\sin {1\over x}=0 \Rightarrow g'(0)=0存在\\ 而\lim_{x\to 0} g'(x)=\lim_{x\to 0} \left(x^2\sin{1\over x}\right)' =\lim_{x\to 0} \left(2x \sin{1\over x} -\cos{1\over x} \right)\\ =\lim_{x\to 0}\left( 2x \sin{1\over x}\right) -\lim_{x\to 0}\cos{1\over x}= 0-\lim_{x\to 0}\cos{1\over x} 不存在\\ \Rightarrow g'(0) \ne \lim_{x\to 0}g'(x),\bbox[red,2pt]{故得證}$$
解答


$$拋物體x^2+y+z^2=2 被平面 z =0所截的表面積,相當於拋物線y^2=x 繞x軸旋轉的表面積\\ y=\sqrt x \Rightarrow y'={1\over 2\sqrt x}因此欲求之表面積=\int_0^2 2\pi \sqrt x \cdot \sqrt{1+\left( {1\over 2\sqrt x}\right)^2}\,dx =\int_0^2 2\pi   \sqrt{x+  {1\over 4} }\,dx \\ =\left.\left[ {4\over 3}\pi (x+1/4)^{3/2} \right] \right|_0^2 = \bbox[red, 2pt]{13\pi \over 3}$$

========================== END ============================

解題僅供參考,其他轉學考試題及詳解

3 則留言:

  1. 第7題答案是不是錯了 ,x^2+y^2應該會=e^2t吧

    回覆刪除
  2. 計算第三題是被平面y=0切,不是z=0

    回覆刪除