臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:微積分B
解答:依題意:ddtV=−2m3/sec,再由相似三角形⇒21=rh⇒r=2h⇒V=13πr2h=43πh3⇒ddtV=4πh2dhdt⇒−2=4π⋅(12)2dhdt(此時r=1⇒h=1/2)⇒dhdt=−2πm/sec
解答:u=√x⇒du=12√xdx=12udx⇒dx=2udu⇒∫sin(√x)dx=∫2usinudu=2(sinu−ucosu)+C=2(sin√x−√xcos√x)+C
解答:f(x,y,z)=x2+2y2+xy+ez−2⇒{fx=2x+yfy=4y+xfz=ez⇒(fx(P),fy(P),fz(P))=(2,1,1)⇒切平面:2(x−1)+y+z=0⇒2x+y+z=2
解答:∫3x2+1x4+x2dx=∫1x2+2x2+1dx=−1x+2tan−1x+C
解答:∂∂xf(0,0)=limt→0f(t,0)−f(0,0)t=limt→02t−0t=2
解答:f(x)=∫x3−3x0ecos(t2+1)dt⇒f′(x)=ecos((x3−3x)2+1)⋅(3x2−3)=g(x)⋅(3x2−3)由於g(x)=ecos((x3−3x)2+1)>0,∀x∈R,因此f′(x)=0⇒3x2−3=0⇒x=±1又f″
解答:f(x)={x^3\over 1+x^2} = {x^3\over 1-(-x^2)} = x^3(1-x^2 +x^4 -x^6 +x^8-\cdots) =x^3-x^5+x^7 -x^9+x^{11}-\cdots\\ = \bbox[red, 2pt]{\sum_{k=1}^\infty (-1)^{k+1}x^{2k+1}}
解答:\int_0^1 \int_x^1 \cos(y^2+1)\,dydx = \int_0^1 \int_0^y \cos(y^2+1)\,dxdy =\int_0^1 y\cos(y^2+1)\,dy \\=\int_1^2 {1\over 2}\cos u\,du \;(u=y^2+1) = \left.\left[ {1\over 2}\sin u \right] \right|_1^2 = \bbox[red, 2pt]{{1\over 2}(\sin 2-\sin 1)}
解答:令\cases{f(x,y,z)=2x+3y+ 5z\\ g(x,y,z)=x^2+y^2+z^2-19},則\cases{f_x= \lambda g_x\\ f_y=\lambda g_y\\ f_z= \lambda g_z\\ g=0} \Rightarrow \cases{2=\lambda (2x)\cdots(1)\\ 3=\lambda (2y)\cdots(2)\\ 5=\lambda (2z)\cdots(3) \\ x^2+y^2+z^2=19 \cdots(4)}\\ \cases{(1)\div (2)\\ (2)\div (3)} \Rightarrow \cases{x=2y/3\\ z=5y/3} 代入(4) \Rightarrow ({4\over 9}+1 +{25\over 9})y^2=19 \Rightarrow y^2 = {9\over 2} \Rightarrow y=\pm {3\over \sqrt 2} \\ \Rightarrow \cases{x=\pm 2/\sqrt 2\\ z= \pm 5/\sqrt 2} \Rightarrow 最大值f(2/\sqrt 2,3/\sqrt 2,5/\sqrt 2) ={4+9+25\over \sqrt 2} = \bbox[red, 2pt]{19\sqrt 2}
==================== END ====================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言