國立高雄師範大學 108 學年度學士班轉學生招生考試試題
系所別:數學系及光通系二年級
科 目:微積分(全一頁)
解答:f(x)=ex⇒dkdxnf(x)|x=0=e0=1⇒∞∑k=0f[k](0)k!(x−0)k=∞∑k=01k!xk
解答:f(x,y)=x2+y2+2⇒{fx=2xfy=2y⇒{fxx=2fxy=0fyy=2⇒d=fxxfyy−f2xy=4>0因此{fx=0fy=0⇒(x,y)=(0,0)∈S⇒f(0,0)=2為相對極小值也是最小值
解答:(a)1−x1/n1−x=1−x1/n(1−x1/n)(1+x1/n+x2/n+⋯+x(n−1)/n)=11+x1/n+x2/n+⋯+x(n−1)/n⇒limx→1(1−x1/2)(1−x1/3)⋯(1−x1/n)(1−x)n−1=limx→1(1−x1/21−x⋅1−x1/31−x⋯1−x1/n1−x)=limx→1(11+x1/2⋅11+x1/3+x2/3⋯11+x1/n+x2/n+⋯+x(n−1)/n)=12⋅3⋯n=1n!(b)limx→2cos(π/x)x−2=limx→2(cos(π/x))′(x−2)′=limx→2πx2sin(π/x)1=π4
解答:(a)令{P(x,y)=−y/(x2+y2)Q(x,y)=x/(x2+y2)⇒{Py=−1/(x2+y2)+2y2/(x2+y2)2Qx=1/(x2+y2)−2x2/(x2+y2)2依Green's theorem 定理,若R(封閉曲線C所圍區域)不含原點,則∮CPdx+Qdy=∬RQx−PydA=∬R(2x2+y2−2(x2+y2)(x2+y2)2)dA=∬R0dA=0(b)取C′為一圓路徑,其圓心為原點且半徑為a,路徑方向為順時鐘,則∮C−C′Pdy+Qdx=0⇒∮CPdy+Qdx=∮C′Pdy+Qdx=∫2π0−acosθa2(−asinθ)+acosθa2⋅acosθdθ∫2π01dθ=2π(取{x=acosθy=asinθ⇒{dx=−asinθdθdy=asinθdθx2+y2=a2)
解答:
\cases{u= xy\\ v=x^2-y^2} \Rightarrow \begin{vmatrix} u_x &u_y\\ v_x & v_y\end{vmatrix}= \begin{vmatrix} y & x\\ 2x & -2y\end{vmatrix} =-2(x^2+y^2) \Rightarrow \begin{vmatrix} x_u &x_v\\ y_u & y_v \end{vmatrix} =1/\begin{vmatrix} u_x &u_y\\ v_x & v_y\end{vmatrix} =-{1\over 2(x^2+y^2)} \\ 又(x^2+y^2)^2 = (x^2-y^2)^2 +4x^2y^2 =v^2+ 4u^2 \Rightarrow x^2+y^2 = \sqrt{v^2+4u^2} \\ \Rightarrow \begin{vmatrix} x_u &x_v\\ y_u & y_v \end{vmatrix} =-{1\over 2 \sqrt{v^2+4u^2} } \Rightarrow \iint_R (x^4-y^4)e^{xy}dA = \iint_R (x^2+y^2) (x^2-y^2)e^{xy}dA \\ =\int_1^4 \int_{\sqrt{81-v^2}/2}^{\sqrt{ 256-v^2}/2} \sqrt{v^2+4u^2}\cdot ve^{u}\cdot {-1\over 2\sqrt{v^2+4u^2}} \;dudv=\int_1^4 \int_{\sqrt{81-v^2}/2}^{\sqrt{ 256-v^2}/2} -{1\over 2} ve^u\;dudv \\ =\int_1^4 -{1\over 2}v\left( e^{\sqrt{256-v^2}/2} -e^{\sqrt{81-v^2}/2}\right)dv =\int_1^4 {1\over 2}ve^{\sqrt{81-v^2}/2} \,dv -\int_1^4{1\over 2}ve^{\sqrt{256-v^2}/2}\,dv \\ =\int_{80}^{65} -{1\over 4}e^{\sqrt s}\,ds +\int_{255}^{240} {1\over 4}e^{\sqrt t}\,dt,其中\cases{s=81-v^2\\ t=256-v^2} \Rightarrow \cases{ds =-2vdv\\ dt =-2vdv} \\ =-{1\over 4}\left. \left[ 2e^{\sqrt s}(\sqrt s-1)\right]\right|_{80}^{65} +{1\over 4} \left.\left[2e^{\sqrt t}(\sqrt t-1) \right]\right|_{255}^{240}\\ =\bbox[red, 2pt]{{1\over 2}\left(e^{\sqrt{80}} (\sqrt{80}-1) +e^{\sqrt{240}}( \sqrt{240}-1) \right) -{1\over 2}\left(e^{\sqrt{65}}(\sqrt{65}-1) +e^{\sqrt{255}} (\sqrt{255}-1) \right) }
================= END =====================
解題僅供參考,其他試題及詳解
沒有留言:
張貼留言