Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2022年11月14日 星期一

111年專科學力鑑定-微積分詳解

教育部 111 年自學進修專科學校學力鑑定考試

專業科目(一):微積分

解答x7xy+y9=1ddx(x7xy+y9)=7x6yxdydx+9y8dydx=0dydx=y7x69y8xdydx|(1,1)=1791=34(A)
解答f(x)=x4x2f(x)=4x32xf(x)=02x(2x21)=0x=0,±1/2{f(0)=0f(1/2)=1412=141/2[0,1]f(1/2)14(C)
解答{u=xdu=dxdv=exdxv=exxexdx=xex+exdx=xexex+C10xexdx=[xexex]|10=e1e1(1)=12e1(B)
解答y=4xy=2x2+C(2,9)9=8+CC=1y=2x2+1(C)
解答g(x,y)=sinxex+y2gx=cosxex+y2sinx(ex+y2)2exgx(0,1)=11+10=12(A)
解答F(x)=x24t2+8dtF(x)=x4+82xF(1)=9(2)=6(A)
解答201y/2ex2dxdy=102x0ex2dydx=102xex2dx=[ex2]|10=e1(C)
解答0|x10sin1x|x10limx0x10sin1x=0f(0)=0(B)
解答g(x)=x2+x+1x3+x2+x+1g(x)=2x+1x3+x2+x+1x2+x+1(x3+x2+x+1)2(3x2+2x+1)g(1)=343166=3498=38(D)
解答limxlnxx1/111=limx(lnx)(x1/111)=limx1/x1111x110/111=limx111x1/111=0(A)
解答f(x)=xex2/2f(x)=ex2/2x2ex2/2=ex2/2(1x2)f(x)=0x2=1x=±1(B)
解答f(x,y)=sinxcosy{fx=cosxcosyfy=sinxsiny{fxx=sinxcosyfyy=sinxcosyfxy=cosxsinyd(x,y)=fxxfyyf2xy=(sinxcosy)2(cosxsiny)2d(π/2,π)=1>0f(π/2,π)(B)
解答122x+4x2(x2)dx=12(2x2x2+2x2)dx=[2lnx+2x+2ln(x2)]|12=[ln(x2)2x2+2x]|12=ln92(ln161)=2ln32ln23=2ln321(D)
解答y=xy=11+y2=2x=102πx2dx=[2πx2]|10=2π(B)
解答r=e2θdrdθ=2e2θln4ln2r2+(drdθ)2dθln4ln2e4θ+4e4θdθln4ln25e2θdθ=[125e2θ]|ln4ln2=52(164)=65(C)
解答f(x)=11x=1+x+x2+=k=0xkf(x)=k=1kxk1f
解答\lim_{x\to 11}{\sqrt x-\sqrt{11} \over x^2-121} =\lim_{x\to 11}{\sqrt x-\sqrt{11} \over (x+11)(x-11)} = \lim_{x\to 11}{\sqrt x-\sqrt{11} \over (x+11)(\sqrt x-\sqrt{11}) (\sqrt x+\sqrt{11})}\\ = \lim_{x\to 11}{1 \over (x+11)  (\sqrt x+\sqrt{11})} ={1\over 22(2\sqrt{11})} ={1\over 44\sqrt{11}},故選\bbox[red, 2pt]{(D)}
解答y=\sqrt x \Rightarrow x=y^2 \Rightarrow 繞Y軸旋轉體積=\int_0^2 x^2 \pi \,dy =\int_0^2 \pi y^4\,dy =\left.\left[ {\pi \over 5}y^5 \right]\right|_0^2 ={32\over 5}\pi ,故選\bbox[red, 2pt]{(A)}
解答\int_0^{2\pi} {1\over 2}r^2\,d\theta =\int_0^{2\pi} 2(1+\cos \theta)^2\,d\theta =\int_0^{2\pi} 2(1+2\cos \theta +\cos^2\theta)\,d\theta \\=\int_0^{2\pi} 2(1+2\cos \theta +{\cos 2\theta+1\over 2})\,d\theta =\int_0^{2\pi} \left(3 +4\cos \theta +\cos 2\theta \right)\,d\theta \\ =\left.\left[ 3\theta+ 4\sin\theta +{1\over 2}\sin 2\theta \right]\right|_0^{2\pi} \ =6\pi,故選\bbox[red, 2pt]{(C)}
解答\lim_{x \to \infty} \left( \sqrt{x^2+11x}-x\right) =\lim_{x \to \infty}  { (\sqrt{x^2+11x}-x)(\sqrt{x^2+x}+x) \over \sqrt{x^2+x}+x} =\lim_{x \to \infty} {11x \over \sqrt{x^2+x}+x} \\=\lim_{x \to \infty} {11 \over \sqrt{1+1/x}+1} ={11\over 2},故選\bbox[red, 2pt]{(A)}
======================== END =========================
解題僅供參考,其他歷屆試題及詳解


沒有留言:

張貼留言