Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2022年11月23日 星期三

107年台聯大轉學考-微積分A2詳解

台灣聯合大學系統107學年度學士班轉學生考試

科目:微積分
類組別:A2
甲、填充題:共8題,每題8分,共64分

解答

f(x)=x216f(x)0,x[4,4]{a=4b=4,baf(x)dx=[13x316x]|44=2563
解答π/201sinxdx=π/201cos(π/2x)dx=π/201(12sin2(π/4x/2))dx=π/202sin2(π/4x/2)dx=2π/20sin(π/4x/2)dx=[22cos(π/4x/2)]|π/20=22(122)=222
解答{x=rcosθy=rsinθR3x2y2dA=2π0303r2rdrdθ=2π00312ududθ(u=3r2)=2π0[16u3/2]|03dθ=2π0=1633/2×2π=23π
解答lim
解答\int_1^3 \int_0^{2x} \ln x\,dydx =\int_1^3   2x\ln x\, dx = \left.\left[ x^2\ln x-{1\over 2}x^2 \right]\right|_1^3 =9\ln 3-{9\over 2}+{1\over 2} =\bbox[red, 2pt]{9\ln 3-4}
解答z=f(x,y)= \ln(xy)^{1/2} ={1\over 2}\ln(xy) \Rightarrow \cases{f_x= {y\over 2} \cdot{1\over xy} ={1\over 2x} \\ f_y= {x\over 2}\cdot {1\over xy} = {1 \over 2y}} \\ (5,10) \to (5.03,9.96) \Rightarrow \cases{dx=0.03 \\ dy =-0.04} \Rightarrow dz = f_x(5,10)dx +f_y(5,10)dy \\= {1\over 10}\cdot 0.03 +{1\over 20}\cdot (-0.04) = \bbox[red, 2pt]{0.001}
解答{dy\over dt} ={k\over v}(10-y) \Rightarrow \int {1\over 10-y}\,dy = \int {k\over v}\,dt \Rightarrow -\ln(10-y)= {k\over v}t+C \Rightarrow 10-y = e^{-(kt/v+C)} \\ \Rightarrow y=10-e^{-(kt/v+C)} =10-C^*e^{-(kt/v)}\\再將初始值y(0)= y_0代入\Rightarrow y_0= 10-C^* \Rightarrow C^* =10-y_0 \Rightarrow y=10-(10-y_0)e^{-(kt/v)} \\ \Rightarrow \lim_{t\to \infty} y = \bbox[red, 2pt]{10}
解答利用\text{ Lagrange's multiplier }求極值:\cases{f(x,y,z)= xy+2yz+2xz\\ g(x,y,z)= xyz-108} \Rightarrow \cases{f_x =\lambda g_x\\ f_y =\lambda g_y\\ f_z= \lambda g_z\\ g=0} \\ \Rightarrow \cases{y+2z = \lambda yz \cdots(1) \\ x+2z = \lambda xz \cdots(2)\\ 2y+2x = \lambda xy \cdots(3) \\ xyz=108 \cdots(4)} \Rightarrow \cases{(1)\div (2) \Rightarrow {y+2z\over x+2z}={y\over x} \\ (2)\div (3) \Rightarrow {x+2z\over 2(x+y)}={z\over y}} \Rightarrow \cases{x=y\\ y=2z} 代入(4)\Rightarrow 4z^3=108\\ \Rightarrow z=3 \Rightarrow x=y= 6 \Rightarrow f(6,6,3)= 36+ 36+ 36= \bbox[red, 2pt]{108}

乙、計算、證明題:共3題,每題12分,共36分

解答本題少了飛機高度的數據,無法計算!
解答\mathbf{a.}\;積分檢定法\text{ integral test: }\int_1^\infty {e^{2/x}\over x^2}\,dx = \left.\left[ -{1\over 2} e^{2/x}\right]\right|_1^\infty =-{1\over 2}+{1\over 2}e^2 \lt \infty \Rightarrow 級數\bbox[red, 2pt]{收斂} \\\mathbf{b.}\; \lim_{n\to \infty}{n\over \sqrt{3n^2+5}} = \lim_{n\to \infty}{n\over n\sqrt{3+5/n^2}} = {1\over \sqrt 3} \ne 0 \Rightarrow 級數\bbox[red, 2pt]{發散}
解答f為機率密度函數\Rightarrow \iint f(x,y)\,dydx=1 \Rightarrow \int_0^\infty \int_0^\infty ke^{-(x+y)/a}\,dydx= \int_0^\infty \left.\left[ -ake^{-(x+y)/a} \right] \right|_0^\infty \,dx \\=\int_0^\infty  ake^{-x/a}\,dx =\left.\left[ -a^2ke^{-x/a} \right]\right|_0^\infty =a^2k = 1 \Rightarrow \bbox[red, 2pt]{a^2k =1}

================ END =====================

解題僅供參考,其他大學轉學考相關試題及詳解

沒有留言:

張貼留言