國立政治大學113學年度碩士班招生考試
考試科目:微積分
系所別:應用數學系
解答:A. u=cosθ⇒du=−sinθdθ⇒∫π/20sin3θcos2θdθ=∫π/20sinθ(1−cos2θ)cos2θdθ=∫01−(1−u2)u2du=∫10(u2−u4)du=13−15=215B. ∫10∫1x2√ysinydydx=∫10∫√y0√ysinydxdy=∫10ysinydy=[−ycosy+siny]|10=sin1−cos1C. ∭E1x3dV=∫10∫y20∫z+111x3dxdzdy=∫10∫y20[−12x−2]|z+11dzdy=∫10∫y2012(1−1(z+1)2)dzdy=∫10[12(z+11+z)]|y20dy=12∫10(y2+11+y2−1)dy=12[13y3+tan−1y−y]|10=12(13+π4−1)=π8−13解答:f(x)=∫x0x2sin(t2)dt⇒f′(x)=x2sin(x2)+∫x02xsin(t2)dt
解答:h(x)=(sinx)x=exlnsinx⇒h′(x)=(lnsinx+xcosxsinx)exlnsinx=(sinx)x(lnsinx+xcotx),QED.
解答:{u=lnxdv=dx/√x⇒{du=dx/xv=2√x⇒∫lnx√xdx=2√xlnx−∫2√xdx=2√xlnx−4√x⇒∫40lnx√xdx=[2√xlnx−4√x]|40=8(ln2−1)
解答:f(x,y)={x3y−xy3x2+y2if (x,y)≠(0,0)0if (x,y)=(0,0)⇒fx(x,y)={y(x4+4x2y2−y4)(x2+y2)2if (x,y)≠(0,0)0if (x,y)=(0,0)⇒fxy(0,0)=limh→0fx(0,h)−fx(0,0)h=limh→0h(−h4)/h4h=limh→0−hh=−1
解答:{g(t)=f(tx,ty)⇒g′(t)=xfx(tx,ty)+yfy(tx,ty)g(t)=tnf(x,y)⇒g′(t)=ntn−1f(x,y)⇒g′(1)=xfx(x,y)+yfy(x,y)=nf(x,y).QED.
解答:limx→ag(x)=c⇒∃δ1:0<|x−a|<δ1⟹|g(x)−c|<c2⇒g(x)>c2limx→af(x)=∞⇒∃δ2>0:0<|x−a|<δ2⟹f(x)>2Mc∈RNow we choose δ=min{δ1,δ2}⇒0<|x−a|<δ⇒f(x)g(x)>c2⋅2Mc=M∈R⇒limx→af(x)g(x)=∞,QED
解答:f(x)=x1+x2−tan−1x⇒f′(x)=−2x2(1+x2)2<0, for x>0⇒f(x) is strictly decreasing⇒x1+x2−tan−1x<0⇒x1+x2<tan−1x, for x>0g(x)=x−tan−1x⇒g′(x)=1−11+x2=x21+x2>0, for x>0⇒g(x) is strictly increasing ⇒x−tan−1x>0⇒tan−1x<x, for x>0At last, we have {x1+x2<tan−1xtan−1x<x⇒x1+x2<tan−1x<x, for x>0.QED.
解答:cosθ=√12(cos2θ+1)⇒cosπ4=12√2⇒cosπ8=√12(12√2+1)=12√2+√2⇒cosπ16=√12(√12(12√2+1)+1)=12√2+√2+√2⇒⋯⇒cosπ2n+1=12√2+√2+√2+…⏟n times=12an⇒an=2cosπ2n+1⇒limn→∞an=2⇒limn→∞an exists and limn→∞an=2.QED
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言