國立臺灣科技大學110學年度碩士班招生考試
系所組別:機械工程系碩士班
科目:工程數學
解答:(a) xy″−y′=2x2⇒1xy″−1x2y′=2⇒(1xy′)′=2⇒1xy′=2x+c1⇒y′=2x2+c1x⇒y=23x3+c2x2+c3⇒{y(0)=c3=0y(1)=2/3+c2+c3=1⇒c2=13⇒y=23x3+13x2(b) y″+5y′+6y=0⇒λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−2,−3⇒yh=c1e−2x+c2e−3xUsing variations of parameters, let {y1=e−2xy2=e−3x⇒W(x)=|y1y2y′1y′2|=|e−2xe−3x−2e−2x−3e−3x|=−e−5x⇒yp=−e−2x∫e−3x⋅e−2x−e−5xdx+e−3x∫e−2x⋅e−2x−e−5xdx=e−2x∫1dx−e−3x∫exdx⇒yp=xe−2x−e−2x⇒y=yh+yp⇒y=c3e−2x+c2e−3x+xe−2x⇒{y(0)=c3+c2=0y(1)=(c3+1)e−2+c2e−3=e−3⇒{c2=1c3=−1⇒y=−e−2x+e−3x+xe−2x解答:L{f(t)}=L{e−tcost}s=1s⋅s+1(s+1)2+1=s+1s(s2+2s+2)
解答:f(t)+2∫t0f(τ)cos(t−τ)dτ=4e−t+sint⇒L{f(t)}+2L{∫t0f(τ)cos(t−τ)dτ}=4L{e−t}+L{sint}⇒F(s)+2L{f(t)}L{cost}=4⋅1s+1+1s2+1⇒F(s)+2F(s)⋅ss2+1=4s+1+1s2+1⇒F(s)=(4s+1+1s2+1)⋅s2+1(s+1)2=4(s2+1)(s+1)3+1(s+1)2=4s2+s+5(s+1)3⇒f(t)=L−1{F(s)}=L−1{4s2+s+5(s+1)3}=L−1{4s+1−7(s+1)2+8(s+1)3}⇒f(t)=4e−t−7te−t+4t2e−t
解答:A=[0−213]⇒det
解答:u(x,t)=v(x,t)+u_{ss}(x)\\ u_{ss}x= \alpha x+\beta \Rightarrow \cases{u(-1,t)=-\alpha+\beta=2\\ u(1,t)=\alpha+\beta=4} \Rightarrow \cases{\alpha=1\\ \beta=3} \Rightarrow u_{ss}(x)= x+3\\ \Rightarrow u(x,0)=3+x+\sin(2\pi x)-u_{ss}(x)= \sin(2\pi x) \\ \Rightarrow v(x,t)= \sum_{n=1}^\infty b_n e^{-n^2\pi^2 t/4} \sin {n\pi\over 2}(x+1) \\ \Rightarrow \bbox[red, 2pt]{u(x,t)= x+3+ \sum_{n=1 }^\infty b_n e^{-n^2\pi^2 t/4} \sin {n\pi\over 2}(x+1) , \text{where }b_n= \int_{-1}^1 \sin(2\pi x)\sin{n\pi\over 2}(x+1)\,dx }
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言