國立中山大學110學年度碩士班招生考試
科目名稱:工程數學【資工系碩士班乙組】
解答:A=[1502−2401004800017−2]R1−5R2→R1→[1002−22−3601004800017−2]R1−2R3→R1→[1000−36−3201004800017−2]⇒{v−36z=−32w+4z=8y+7z=−2⇒(v,w,x,y,z)=(36z−32,−4z+8,x,−2−7z,z),x,z∈R解答:2.1 A=[300021012]⇒det(A−λI)=(3−λ)(2−λ)2−(3−λ)=−(λ−3)2(λ−1)2.2 det(A−λI)=0⇒λ=1,3
解答:H(s)=2s2−10s+1s2+3s+2=2+13s+1−29s+2⇒h(t)=L−1{H(s)}=L−1{2}+L−1{13s+1}−L−1{29s+2}=2δ(t)+13e−t−29e−2t
解答:4.1 ak=18∫0−4(4+t)e−j(2π/8)ktdt⇒x(t)={0,0<t≤44+t,−4≤t<04.2 4.3 a0=18∫0−4(4+t)dt=18[4t+12t2]|0−4=18⋅8=1
解答:Let {x1=yx2=y′x3=y″
解答:y''+4y=3\sin(2t) \Rightarrow L\{y'' \}+4L\{y\} =3L\{\sin(2t)\} \\ \Rightarrow s^2Y(s)-sy(0)-y'(0)+4Y(s) =3\cdot {2\over s^2 +2^2} \Rightarrow (s^2+4)Y(s) ={6\over s^2+4}+2s-1 \\ \Rightarrow Y(s)={6\over (s^2+4)^2} +{2s-1\over s^2+4} ={6\over s^2+4}+ {2s\over (s^2+4)^2}-{1\over (s^2+4)^2} \\ \Rightarrow y(t)= L^{-1}\{Y(s)\}=L^{-1}\{{6\over s^2+4}\}+ L^{-1}\{{2s\over (s^2+4)^2} \}- L^{-1} \{{1\over (s^2+4)^2}\} \\\qquad = {6\over 16}(\sin(2t)-2t\cos(2t))+2\cos(2t)-{1\over 2}\sin(2t)\\ \Rightarrow \bbox[red, 2pt]{y(t)=-{1\over 8}\sin(2t) + 2\cos(2t)-{3\over 4}t\cos(2t)}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言