國立政治大學111學年度轉學生招生考試
科目:微積分系所別:應用數學系三年級
解答:(a) lim(x,y)→(0,0)x2ysiny3x4+y2=lim(x,y)→(0,0)(x2y23x4+y2⋅sinyy)=lim(x,y)→(0,0)x2y23x4+y2⋅limy→0sinyy=lim(x,y)→(0,0)x2y23x4+y2⋅1=lim(x,y)→(0,0)x2y23x4+y20≤x2y23x4+y2≤x2y2y2=x2=0(as x to 0)⇒lim(x,y)→(0,0)x2y23x4+y2=0⇒lim(x,y)→(0,0)x2ysiny3x4+y2=0(b) L=limx→0sin3xtan2(3x)x(1−cos(5x))2=limx→0(x−x33!+⋯)3(3x+13(3x)3+⋯)2x((5x)22!−(5x)44!+⋯)2Considering the coefficients of x5,L=1⋅321⋅6254=36625(d) {P(x,y)=5x+cosy2Q(x,y)=3y+e√x⇒{Px=5Qy=3Using Green Theorem, ∫CQdx+Pdy=∫D(Px−Qy)dA=∫D(5−3)dA=2⋅13=23Area of D=∫10(√x−x2)dx=13

解答:(a) 1−12n=2n−12n<p<1⇒(1−12n)3nlnn<p3nlnn<p3n<pn, for p≥3∑pn is convergent⇒∑(1−12n)3nlnn is convergent(b) Let an=1n1+1/n,bn=1n(∑bn is divergent), then limn→∞anbn=limn→∞1n1/n=1By limit comparison test,∑bn and ∑an are both divergent. That is, ∞∑n=31n1+1/n is divergent
解答:
area of R=¯AB⋅¯OB⋅π=9√10π
解答:V=∫1−143π(1−u2)3/2duu=sinθ⇒du=cosθdθ⇒V=43π∫π/2−π/2cos4θdθ=43π∫π/2−π/2cos2θ(1−sin2θ)dθ=43π∫π/2−π/2cos2θdθ−43π∫π/2−π/2cos2θsin2θdθ=23π∫π/2−π/2(cos2θ+1)dθ−13π∫π/2−π/2sin22θdθ=23π[12sin2θ+θ]|π/2−π/2−16π∫π/2−π/2(1−cos4θ)dθ=23π2−16π[θ−14sin4θ]|π/2−π/2=23π2−16π2=12π2
解答:V=∫1−143π(1−u2)3/2duu=sinθ⇒du=cosθdθ⇒V=43π∫π/2−π/2cos4θdθ=43π∫π/2−π/2cos2θ(1−sin2θ)dθ=43π∫π/2−π/2cos2θdθ−43π∫π/2−π/2cos2θsin2θdθ=23π∫π/2−π/2(cos2θ+1)dθ−13π∫π/2−π/2sin22θdθ=23π[12sin2θ+θ]|π/2−π/2−16π∫π/2−π/2(1−cos4θ)dθ=23π2−16π[θ−14sin4θ]|π/2−π/2=23π2−16π2=12π2
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言