Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年11月6日 星期三

111年政大轉學考-微積分詳解

國立政治大學111學年度轉學生招生考試

科目:微積分
系所別:應用數學系三年級

解答:(a) lim(x,y)(0,0)x2ysiny3x4+y2=lim(x,y)(0,0)(x2y23x4+y2sinyy)=lim(x,y)(0,0)x2y23x4+y2limy0sinyy=lim(x,y)(0,0)x2y23x4+y21=lim(x,y)(0,0)x2y23x4+y20x2y23x4+y2x2y2y2=x2=0(as x to 0)lim(x,y)(0,0)x2y23x4+y2=0lim(x,y)(0,0)x2ysiny3x4+y2=0(b) L=limx0sin3xtan2(3x)x(1cos(5x))2=limx0(xx33!+)3(3x+13(3x)3+)2x((5x)22!(5x)44!+)2Considering the coefficients of x5,L=13216254=36625

解答:(a) secu=x22{tanusecudu=dx/22tanu=x24x1x24xdx=2tanusecu2tanudu=secudu=ln(|tanu+secu|)+C=ln(12|x24x+x2|)+C

(c) {u=y+xv=yx{x=(uv)/2y=(u+v)/2|J|=|(x,y)(u,v)|=1/21/21/21/2=12Rcos(yxy+x)dA=21uu12cosvudvdu=21[u2sinvu]|uudu=21usin1du=sin1[12u2]|21=32sin1

(d) {P(x,y)=5x+cosy2Q(x,y)=3y+ex{Px=5Qy=3Using Green Theorem, CQdx+Pdy=D(PxQy)dA=D(53)dA=213=23Area of D=10(xx2)dx=13


解答:(a) 112n=2n12n<p<1(112n)3nlnn<p3nlnn<p3n<pn, for p3pn is convergent(112n)3nlnn is convergent(b) Let an=1n1+1/n,bn=1n(bn is divergent), then limnanbn=limn1n1/n=1By limit comparison test,bn and an are both divergent. That is, n=31n1+1/n is divergent
解答:

area of R=¯AB¯OBπ=910π
解答:V=1143π(1u2)3/2duu=sinθdu=cosθdθV=43ππ/2π/2cos4θdθ=43ππ/2π/2cos2θ(1sin2θ)dθ=43ππ/2π/2cos2θdθ43ππ/2π/2cos2θsin2θdθ=23ππ/2π/2(cos2θ+1)dθ13ππ/2π/2sin22θdθ=23π[12sin2θ+θ]|π/2π/216ππ/2π/2(1cos4θ)dθ=23π216π[θ14sin4θ]|π/2π/2=23π216π2=12π2

======================= END ======================

解題僅供參考,轉學考歷年試題及詳解



沒有留言:

張貼留言