國立政治大學112學年度轉學生招生考試
科目:微積分系所別:應用數學系三年級
解答:(a) limn→∞(−1)nn2n2+n+1=limn→∞(−1)n(1+1/n+1/n2)=±1⇒ the limit does not exist(b) limx→−∞√4x6+7x3+1=limx→−∞2|x3|√1+7/(4x6)x3+1=−2(c) {x=rcosθy=rsinθ⇒lim(x,y)→(0,0)2xy+3x3√x2+y2=limr→02r2cosθsinθ+3r3cos3θr=limr→0(rsin2θ+3r2cos3θ)=0解答:xy+exz+yz2=0⇒y+(z+xzx)exz+2yzzx=0⇒∂z∂x=zx=−y+zexzxexz+2yz⇒∂z∂x(0,1,2)=−1+20+4=−34
解答:(a) {u=secxdv=sec2xdx⇒{du=tanxsecxdxv=tanx⇒I=∫1cos3xdx=∫sec3dx=tanxsecx−∫tan2xsecxdx=tanxsecx−∫(sec2x−1)secxdx=tanxsecx−I+∫secxdx⇒2I=tanxsecx+ln|tanx+secx|+C⇒∫2cos3x=2I=tanxsecx+ln|tanx+secx|+C(b) u=ex⇒du=exdx⇒∫ex+exdx=∫eex⋅exdx=∫eudu=eu+C=eex+C
解答:f′(c)=f(b)−f(a)b−a⇒−1≤f(5)−f(1)5−1≤3⇒−1≤4−f(1)4≤3⇒−8≤f(1)≤8⇒the largest value f(x) is 8
解答:{f(x,y)=x2yg(x,y)=x2+y2−1⇒{fx=λgxfy=λgyg=0⇒{2xy=λ(2x)x2=λ(2y)x2+y2=1⇒2yx=xy⇒x2=2y2⇒2y2+y2=1⇒y=±1√3⇒x=±√23⇒{f(√23,√13)=2√39f(√23,−√13)=−2√39f(−√23,√13)=2√39f(−√23,−√13)=−2√39⇒{max:2√39min:−2√39
解答:g(x)=1+x+x2+⋯=1+x(1+x+x2+⋯)=1+xg(x)⇒g(x)=11−x,|x|<1⇒f(x)=g(−x2)=11+x2=1−x2+x4−x6+⋯⇒f(x)=11+x2=∞∑n=0(−1)nx2n,|−x2|<1⇒|x|<1f(x)=11+x2=∞∑n=0(−1)nx2n⇒∫f(x)dx=∫11+x2dx=∫∞∑n=0(−1)nx2n=arctan(x)+C=C+∞∑n=0(−1)n2n+1x2n+1⇒arctan(x)=∞∑n=0(−1)n2n+1x2n+1⇒arctan(1√3)=∞∑n=0(−1)n(2n+1)(√3)2n+1⇒∞∑n=0(−1)n(2n+1)(√3)2n+1=π6
解答:
{P(x,y)=ex+y2Q(x,y)=ey+x2⇒Qx−Py=2x−2yBy Green's Theorem,∫CPdx+Qdy=∫D(Qx−Py)dxdy=∫20∫4x2(2x−2y)dydx=∫20(x4−2x3+8x−16)dx=−885
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言