國立政治大學112學年度轉學生招生考試
科目:微積分(一)系所別:應用數學系二年級
解答:(a) limx→−∞√4x2+x+75x−1=limx→−∞|2x|√1+1/4x+7/4x25x−1=−25(b) xx+1≤xx−sinx≤xx−1,x>0⇒limx→∞xx+1≤limx→∞xx−sinx≤limx→∞xx−1⇒1≤limx→∞xx−sinx≤1⇒limx→∞xx−sinx=1(c) f(x,y)=3y2−x2x2+y2⇒f(x,kx)=(3k2−1)x2(k2+1)x2=3k2−1k2+1 is dependent on k⇒lim(x,y)→(0,0)f(x,y) the limit does not exist
解答:(cosx)siny=esinyln(cosx)=1⇒(y′cosyln(cosx)−sinxsinycosx)esinyln(cosx)=0⇒y′cosyln(cosx)−sinxsinycosx=0⇒y′cosyln(cosx)=tanxsiny⇒y′=tanxsinycosyln(cosx)⇒y′=dydx=tanxtanyln(cosx)
解答:f(x)=x3arctan(x)=∞∑n=0(−1)n⋅12n+1x2n+4=x4−13x6+⋯+161x64+⋯⇒f[64](0)=64!61
解答:(ρ,θ,ϕ)=(2,−π4,π4)⇒{x=ρsinϕcosθ=2(√2/2)(√2/2)=1y=ρsinϕsinθ=2(√2/2)(−√2/2)=−1z=ρcosϕ=2⋅(√2/2)=√2⇒∂∂ϕF=∂F∂x⋅∂x∂ϕ+∂F∂y⋅∂y∂ϕ+∂F∂z⋅∂z∂ϕ=∂F∂x⋅ρcosϕcosθ+∂F∂y⋅ρcosϕsinθ+∂F∂z⋅(−ρsinϕ)⇒∂∂ϕF(1,−1,√2)=1⋅2⋅√22⋅√22+2⋅2⋅√22⋅−√22+(−2)⋅(−2)⋅√22=1−2+2√2=−1+2√2

解答:f(x,y)=2x2+y2−4y=2x2+(y−2)2−4≥−4⇒abs. min=f(0,2)=−4⇒{fx=4xfy=2y−4⇒{fxx=4fxy=0fyy=2⇒d(x,y)=fxxfyy−(fxy)2=8>0⇒{fxx>0d>0⇒maximum at boundary points of region R⇒{f(0,0)=0f(4,4)=32f(−4,4)=32⇒{max: 32min: −4

解答:ex=1+x+12!x2+13!x3+⋯+1n!xn+⋯⇒f′(x)=ex2=1+x2+12!x4+13!x6+⋯+1n!x2n+⋯⇒f(x)=c+x+13x3+15⋅2!x5+17⋅3!x7+⋯+1(2n+1)n!x2n+1+⋯⇒f(0)=c=2⇒f(x)=2+x+13x3+15⋅2!x5+17⋅3!x7+⋯+1(2n+1)n!x2n+1+⋯⇒f(1)=3+13+15⋅2!+⋯⇒f(1)>3and f(1)=2+1+13+15⋅2!+17⋅3!+⋯<2+1+1+12!+13!+⋯=2+e⇒f(1)<2+e⇒3<f(1)<2+e,QED.

解答:f(x)=ax⇒f′(x)=ddxax=limh→0f(x+h)−f(x)h=limh→0ax+h−axh=limh→0ddh(ax+h−ax)ddhh=limh→0(lna)ax+h1=(lna)ax,QED.
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
第四題,應是單純沒注意到,答案應是-1+2√2
回覆刪除對,已修訂,謝謝!
刪除