2024年11月1日 星期五

112年政大轉學考-微積分(一)詳解

國立政治大學112學年度轉學生招生考試

科目:微積分(一)
系所別:應用數學系二年級

解答:(a) limx4x2+x+75x1=limx|2x|1+1/4x+7/4x25x1=25(b) xx+1xxsinxxx1,x>0limxxx+1limxxxsinxlimxxx11limxxxsinx1limxxxsinx=1(c) f(x,y)=3y2x2x2+y2f(x,kx)=(3k21)x2(k2+1)x2=3k21k2+1 is dependent on klim(x,y)(0,0)f(x,y) the limit does not exist

解答:(cosx)siny=esinyln(cosx)=1(ycosyln(cosx)sinxsinycosx)esinyln(cosx)=0ycosyln(cosx)sinxsinycosx=0ycosyln(cosx)=tanxsinyy=tanxsinycosyln(cosx)y=dydx=tanxtanyln(cosx)

解答:f(x)=x3arctan(x)=n=0(1)n12n+1x2n+4=x413x6++161x64+f[64](0)=64!61

解答:(ρ,θ,ϕ)=(2,π4,π4){x=ρsinϕcosθ=2(2/2)(2/2)=1y=ρsinϕsinθ=2(2/2)(2/2)=1z=ρcosϕ=2(2/2)=2ϕF=Fxxϕ+Fyyϕ+Fzzϕ=Fxρcosϕcosθ+Fyρcosϕsinθ+Fz(ρsinϕ)ϕF(1,1,2)=122222+222222+(2)(2)22=12+22=1+22

解答:{T(x,y,z)=xz+yzg(x,y,z)=x2+y2+z21{Tx=λgxTy=λgyTz=λgzg=0{z=λ(2x)z=λ(2y)x+y=λ(2z)x2+y2+z2=1{x=yz2=2x2x2+y2+z2=x2+x2+2x2=4x2=1{x=y=1/2x=y=1/2z2=12z=±12{(x,y,z)=(1/2,1/2,1/2)(x,y,z)=(1/2,1/2,1/2)(1/2,1/2,1/2)(1/2,1/2,1/2){T(1/2,1/2,1/2)=1/2T(1/2,1/2,1/2)=1/2T(1/2,1/2,1/2)=1/2T(1/2,1/2,1/2)=1/2the hottest spot: 22


解答:f(x,y)=2x2+y24y=2x2+(y2)244abs. min=f(0,2)=4{fx=4xfy=2y4{fxx=4fxy=0fyy=2d(x,y)=fxxfyy(fxy)2=8>0{fxx>0d>0maximum at boundary points of region R{f(0,0)=0f(4,4)=32f(4,4)=32{max: 32min: 4


解答:ex=1+x+12!x2+13!x3++1n!xn+f(x)=ex2=1+x2+12!x4+13!x6++1n!x2n+f(x)=c+x+13x3+152!x5+173!x7++1(2n+1)n!x2n+1+f(0)=c=2f(x)=2+x+13x3+152!x5+173!x7++1(2n+1)n!x2n+1+f(1)=3+13+152!+f(1)>3and f(1)=2+1+13+152!+173!+<2+1+1+12!+13!+=2+ef(1)<2+e3<f(1)<2+e,QED.

 

解答:f(x)=axf(x)=ddxax=limh0f(x+h)f(x)h=limh0ax+haxh=limh0ddh(ax+hax)ddhh=limh0(lna)ax+h1=(lna)ax,QED.

======================= END ======================

解題僅供參考,轉學考歷年試題及詳解

2 則留言: