國立中正大學113學年度碩士班招生考試
科目名稱:微積分
系所組別:經濟學系國際經濟學
解答:1. (1)L=(1+1x)x=(x+1x)x⇒lnL=ln(x+1)−lnx1/x⇒limx→∞lnL=limx→∞(ln(x+1)−lnx)′(1/x)′=limx→∞1x+1−1x−1x2=limx→∞(−x2x+1+x)=limx→∞xx+1=1⇒limx→∞L=e1=e(2) limx→02sinxx=limx→0(2sinx)′(x)′=limx→02cosx1=2(3)L=(3x+4x)1/x⇒lnL=ln(3x+4x)x⇒limx→∞lnL=limx→∞(ln(3x+4x))′(x)′=limx→∞ln3⋅3x+ln4⋅4x3x+4x=limx→∞ln3⋅(3/4)x+ln4(3/4)x+1=ln4⇒limx→∞L=eln4=42. (4) f(x)=11+1x=xx+1⇒f′(x)=1x+1−x(x+1)2=1(x+1)2(5) g(x)=ex1+ex=1−11+ex⇒g′(x)=ex(1+ex)2
3. (6) u=lnx⇒du=dxx⇒∫1xlnxdx=∫1udu=lnu+c1=ln(lnu)+c1(7) {u=exdv=cosxdx⇒{du=exdxv=sinx⇒I=∫excosxdx=exsinx−∫exsindx{u=exdv=sinxdx⇒{du=exdxv=−cosx⇒∫exsinxdx=−excosx+∫excosxdx⇒I=exsinx+excosx−I⇒I=12ex(sinx+cosx)+c1(8) u=x2⇒du=12dx⇒∫e−x2/4dx=2∫e−u2du=2⋅√π2erf(u)+c1=√πerf(x/2)+c1
4. (9) an=n!3n⇒limn→∞|an+1an|=limn→∞|(n+1)!3n+1⋅3nn!|=limn→∞|n+13|=∞⇒發散(10) {limn→∞1n=01n>1n+1⇒收斂 (alternating series test)
解答:5. (11) x+3y=x2y+y2⇒1+3y′=2xy+x2y′+2yy′⇒1−2xy=(x2+2y−3)y′⇒y′=dydx=1−2xyx2+2y−36. (12) f(x)=e−x2⇒f′(x)=−2xe−x2⇒f″
\textbf{7. (14) } R_1=2\int_1^2 \sqrt{x-1}\,dx =2\left. \left[{2\over 3} (x-1)^{3/2}\right] \right|_1^2 ={4\over 3} \\ \qquad R_2= \int_2^5 \left( \sqrt{x-1}-(x-3)\right)\,dx =\left. \left[ {2\over 3}(x-1)^{3/2}-{1\over 2}x^2+ 3x \right] \right|_2^5={19\over 6} \\ \qquad \Rightarrow R_1+R_2= \bbox[red, 2pt]{ 9\over 2}\\ \textbf{8. (15) } f(x,y)=\sqrt x+\sqrt y \Rightarrow \cases{f_x={1\over 2\sqrt x} \ne0\\ f_y={1\over 2\sqrt y} \ne 0} \\ 2x+2y=5 \Rightarrow y={5\over 2}-x \Rightarrow g(x)=f(x,{5\over 2}-x) =\sqrt{x}+ \sqrt{{5\over 2}-x} \\ \qquad \Rightarrow g'(x)={1\over 2\sqrt x}-{1\over 2\sqrt{5/2-x}} =0 \Rightarrow \sqrt x=\sqrt{{5\over 2}-x} \Rightarrow x={5\over 4} \Rightarrow y={5\over 2}-x={5\over 4} \\ \Rightarrow 最大值=f(5/4,5/4) =\sqrt{5\over 4} +\sqrt{5\over 4}= \bbox[red, 2pt]{\sqrt 5}解答:5. (11) x+3y=x2y+y2⇒1+3y′=2xy+x2y′+2yy′⇒1−2xy=(x2+2y−3)y′⇒y′=dydx=1−2xyx2+2y−36. (12) f(x)=e−x2⇒f′(x)=−2xe−x2⇒f″
沒有留言:
張貼留言