國立臺灣師範大學112學年度碩士班招生考試試題
科目:微積分 適用系所:全球經營與策略研究所
解答:f(x)=x4+x3−3x2+1⇒f′(x)=4x3+3x2−6x⇒f″(x)=12x2+6x−6=6(2x−1)(x+1)f″(x)=0⇒x=−1,12⇒{f″(x)>0x>1/2f″(x)<0−1<x<1/2f″(x)>0x<−1f(1/2)=7/16f(−1)=−2⇒{上凹區間:(12,∞)∪(−∞,−1)下凹區間,x∈(−1,12)反曲點:(12,716),(−1,−2)
解答:(1) f(x)=log|2x+1|2x+1⇒f′(x)=2(1−log|2x+1|)(2x+1)2=0⇒|2x+1|=e⇒x=−12±12e⇒{(−∞,−(1+e)/2):f′<0(−(1+e)/2,−(1−e)/2):f′>0(−(1−e)/2,∞):f′<0⇒{f(−(1+e)/2)=−1/e為相對極小值f(−(1−e)/2)=1/e為相對極大值(2) f″(x)=8log|2x+1|−12(2x+1)3⇒{f″(−(1+e)/2)=4/e3>0f″(−(1−e)/2)=−4/e3<0⇒{f(−(1+e)/2)=−1/e為相對極小值f(−(1−e)/2)=1/e為相對極大值
解答:(1) lim
解答:\textbf{(1)} \cases{u=xe^x\\ dv=(1+x)^{-2}\,dx} \Rightarrow \cases{du= (e^x+xe^x)\,dx\\ v=-(1+x)^{-1}} \Rightarrow \int {xe^x \over (1+x)^2} =-{xe^x \over 1+x}+ \int {e^x+xe^x\over 1+x}\,dx \\\qquad =-{xe^x \over 1+x}+ \int e^x\,dx= -{xe^x\over 1+x}+e^x +c = \bbox[red, 2pt]{{e^x\over 1+x}+c}\\ \textbf{(2)} \cases{u=x\cdot 9^{-x} \\ dv=(1- x \ln 9)^{-2}\, dx} \Rightarrow \cases{du =9^{-x}(1-x \ln 9) \\v=(\ln 9-x\ln^2 9)^{-1}} \\\qquad \Rightarrow \int {x3^{-2x} \over (1-(2\ln 3)x)^2}\,dx =\int{ x\cdot 9^{-x}\over (1-x\ln 9)^2} ={x\cdot 9^{-x} \over \ln 9-x\ln^2 9} -\int {9^{-x}(1-x\ln 9)\over \ln 9-x\ln^2 9}\,dx \\={x\cdot 9^{-x} \over \ln 9-x\ln^2 9} -\int {9^{-x} \over \ln 9 }\,dx =\bbox[red, 2pt]{{x\cdot 9^{-x} \over \ln 9-x\ln^2 9}+{1\over 9^x \ln^2 9}+c}
解答:\textbf{(1)} \int_{-2}^2 \int_0^{4-x^2}\,dy dx = \int_{-2}^2 (4-x^2)\,dx = \left. \left[ 4x-{1\over 3}x^3 \right] \right|_{-2}^2 =\bbox[red, 2pt]{32\over 3} \\\textbf{(2) }y=4-x^2 \Rightarrow x=\pm \sqrt{4-y} \Rightarrow \int_{-2}^2 \int_0^{4-x^2}\,dy dx =\int_0^4 \int_{-\sqrt{4-y}}^\sqrt{4-y} \,dxdy = \int_0^4 2\sqrt{4-y} \,dy \\\qquad = \left. \left[-{{4\over 3}(4-y)^{3/2}} \right] \right|_0^4 =0-\left(-{32\over 3} \right)= \bbox[red, 2pt] {32\over 3}
解答:(1) f(x)=log|2x+1|2x+1⇒f′(x)=2(1−log|2x+1|)(2x+1)2=0⇒|2x+1|=e⇒x=−12±12e⇒{(−∞,−(1+e)/2):f′<0(−(1+e)/2,−(1−e)/2):f′>0(−(1−e)/2,∞):f′<0⇒{f(−(1+e)/2)=−1/e為相對極小值f(−(1−e)/2)=1/e為相對極大值(2) f″(x)=8log|2x+1|−12(2x+1)3⇒{f″(−(1+e)/2)=4/e3>0f″(−(1−e)/2)=−4/e3<0⇒{f(−(1+e)/2)=−1/e為相對極小值f(−(1−e)/2)=1/e為相對極大值
解答:(1) lim
解答:\textbf{(1)} \cases{u=xe^x\\ dv=(1+x)^{-2}\,dx} \Rightarrow \cases{du= (e^x+xe^x)\,dx\\ v=-(1+x)^{-1}} \Rightarrow \int {xe^x \over (1+x)^2} =-{xe^x \over 1+x}+ \int {e^x+xe^x\over 1+x}\,dx \\\qquad =-{xe^x \over 1+x}+ \int e^x\,dx= -{xe^x\over 1+x}+e^x +c = \bbox[red, 2pt]{{e^x\over 1+x}+c}\\ \textbf{(2)} \cases{u=x\cdot 9^{-x} \\ dv=(1- x \ln 9)^{-2}\, dx} \Rightarrow \cases{du =9^{-x}(1-x \ln 9) \\v=(\ln 9-x\ln^2 9)^{-1}} \\\qquad \Rightarrow \int {x3^{-2x} \over (1-(2\ln 3)x)^2}\,dx =\int{ x\cdot 9^{-x}\over (1-x\ln 9)^2} ={x\cdot 9^{-x} \over \ln 9-x\ln^2 9} -\int {9^{-x}(1-x\ln 9)\over \ln 9-x\ln^2 9}\,dx \\={x\cdot 9^{-x} \over \ln 9-x\ln^2 9} -\int {9^{-x} \over \ln 9 }\,dx =\bbox[red, 2pt]{{x\cdot 9^{-x} \over \ln 9-x\ln^2 9}+{1\over 9^x \ln^2 9}+c}
解答:\textbf{(1)} \int_{-2}^2 \int_0^{4-x^2}\,dy dx = \int_{-2}^2 (4-x^2)\,dx = \left. \left[ 4x-{1\over 3}x^3 \right] \right|_{-2}^2 =\bbox[red, 2pt]{32\over 3} \\\textbf{(2) }y=4-x^2 \Rightarrow x=\pm \sqrt{4-y} \Rightarrow \int_{-2}^2 \int_0^{4-x^2}\,dy dx =\int_0^4 \int_{-\sqrt{4-y}}^\sqrt{4-y} \,dxdy = \int_0^4 2\sqrt{4-y} \,dy \\\qquad = \left. \left[-{{4\over 3}(4-y)^{3/2}} \right] \right|_0^4 =0-\left(-{32\over 3} \right)= \bbox[red, 2pt] {32\over 3}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言