國立臺灣科技大學112學年度碩士班招生試題
系所組別:材料科學與工程系碩士班乙組
科目:工程數學
解答:(1) {P(x,y)=y4+2yQ(x,y)=xy3+2y4−4x⇒{Py=4y3+2Qx=y3−4⇒Py≠Qx⇒No, it is not exact.(2) u′=−Py−QxPu=−3y3+6y4+2yu=−3yu⇒u′+3yu=0⇒y3u′+3y2u=0⇒(y3u)′=0⇒y3u=c1⇒integration factor u=1y3⇒{uP=y+2/y2uQ=x+2y−4x/y3⇒{(uP)y=1−4/y3(uQ)x=1−4/y3⇒(uP)y=(uQ)x⇒Φ(x,y)=∫(y+2y2)dx=∫(x+2y−4xy3)dy⇒Φ(x,y)=xy+2xy2+ϕ(y)=xy+y2+2xy2+ρ(x)⇒xy+y2+2xy2=c1解答:(1) y″+4y=0⇒λ2+4=0⇒λ=±2i⇒yh=c1cos(2x)+c2sin(2x)(2) yp=A+Bxcos(2x)+Cxsin(2x)⇒y′p=Bcos(2x)−2Bxsin(2x)+Csin(2x)+2Cxcos(2x)⇒y″p=−4Bsin(2x)−4Bxcos(2x)+4Ccos(2x)−4Cxsin(2x)⇒y″p+4yp=4A−4Bsin(2x)+4Ccos(2x)=12−cos(2x)2⇒{A=1/8B=0C=−1/8⇒yp=18−18xsin(2x)⇒y=yh+yp⇒y=c1cos(2x)+c2sin(2x)+18−18xsin(2x)
解答:y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−2xy′+2y=0⇒m(m−1)xm−2mxm+2xm=(m2−3m+2)xm=0⇒m2−3m+2=0⇒(m−2)(m−1)=0⇒yh=c1x2+c2xBy variations of parameters, let {y1=x2y2=xr(x)=1+2/x2, then {y′1=2xy′2=1⇒W=|y1y2y′1y′2|=−x2⇒yp=−y1∫y2r(x)Wdx+y2∫y1r(x)Wdx=x2∫(1x+2x3)dx−x∫(1+2x2)dx⇒yp=x2lnx−x2+1⇒y=yh+yp⇒y=c3x2+c2x+x2lnx+1
解答:(1) f(t)={t−11≤t≤20otherwise⇒L{f(t)}=∫∞0f(t)e−stdt=∫21(t−1)e−stdt=[e−sts2(−st+s−1)]|21=e−2ss2(−s−1)+e−ss2⇒L{f(t)}=e−ss2(1−e−s(s+1))(2) L{y′+4y}=L{f(t)}⇒sY(s)−y(0)+4Y(s)=e−ss2(1−e−s(s+1))⇒Y(s)=e−ss2(s+4)(1−e−s(s+1))⇒y(t)=L−1{Y(s)}=L−1{e−ss2(s+4)(1−e−s(s+1))}=L−1{e−ss2(s+4)}−L−1{se−2ss2(s+4)}−L−1{e−2ss2(s+4)}=u(t−1)(−116+t−14+116e−4(t−1))−u(t−2)(14−14e−4(t−2))−u(t−2)(−116+t−24+116e−4(t−2))⇒y(t)=u(t−1)(−116+t−14+116e−4(t−1))−u(t−2)(316+14(t−2)−316e−4(t−2))
解答:{a=4i+6jb=−2i+6j−6kc=5/2i+3j+1/2k⇒|460−26−652312|=12+0−90−0+6+72=0⇒They are linear dependent.⇒They are coplanar.
解答:(1)ATA=[48−10][48−10]=16+64+100=180(2) BTB=[245][245]=[481081620102025](3) A+BT=[48−10]+[245]=[612−5]
解答:|a⋅(b×c)|=|(3,1,1)⋅((1,4,1)×(1,1,5))|=|(3,1,1)⋅(19,−4,−3)|=50
解答:A=[2−10524012]⇒det(A−λI)=0⇒−(λ−2)(λ2−4λ+5)=0⇒λ=2,2±iλ1=2⇒(A−λ1I)v=0⇒[0−10504010][x1x2x3]=0⇒{5x1+4x3=0x2=0⇒v=x3(−4501),choose v1=(−4501)λ2=2−i⇒(A−λ2I)v=0⇒[i−105i401i][x1x2x3]=0⇒{x1+x3=0x2+ix3=0⇒v=x3(−1−i1),choose v2=(−1−i1)λ3=2+i⇒(A−λ3I)v=0⇒[−i−105−i401−i][x1x2x3]=0⇒{x1+x3=0x2=ix3⇒v=x3(−1i1),choose v3=(−1i1)⇒eigenvalues: 2,2±i, eigenvectors: (−4501),(−1−i1),(−1i1)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言