Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年2月1日 星期六

112年台科大材料碩士班-工程數學詳解

 國立臺灣科技大學112學年度碩士班招生試題

系所組別:材料科學與工程系碩士班乙組
科目:工程數學

解答:(1) {P(x,y)=y4+2yQ(x,y)=xy3+2y44x{Py=4y3+2Qx=y34PyQxNo, it is not exact.(2) u=PyQxPu=3y3+6y4+2yu=3yuu+3yu=0y3u+3y2u=0(y3u)=0y3u=c1integration factor u=1y3{uP=y+2/y2uQ=x+2y4x/y3{(uP)y=14/y3(uQ)x=14/y3(uP)y=(uQ)xΦ(x,y)=(y+2y2)dx=(x+2y4xy3)dyΦ(x,y)=xy+2xy2+ϕ(y)=xy+y2+2xy2+ρ(x)xy+y2+2xy2=c1
解答:(1) y+4y=0λ2+4=0λ=±2iyh=c1cos(2x)+c2sin(2x)(2) yp=A+Bxcos(2x)+Cxsin(2x)yp=Bcos(2x)2Bxsin(2x)+Csin(2x)+2Cxcos(2x)yp=4Bsin(2x)4Bxcos(2x)+4Ccos(2x)4Cxsin(2x)yp+4yp=4A4Bsin(2x)+4Ccos(2x)=12cos(2x)2{A=1/8B=0C=1/8yp=1818xsin(2x)y=yh+ypy=c1cos(2x)+c2sin(2x)+1818xsin(2x)
解答:y=xmy=mxm1y=m(m1)xm2x2y2xy+2y=0m(m1)xm2mxm+2xm=(m23m+2)xm=0m23m+2=0(m2)(m1)=0yh=c1x2+c2xBy variations of parameters, let {y1=x2y2=xr(x)=1+2/x2, then {y1=2xy2=1W=|y1y2y1y2|=x2yp=y1y2r(x)Wdx+y2y1r(x)Wdx=x2(1x+2x3)dxx(1+2x2)dxyp=x2lnxx2+1y=yh+ypy=c3x2+c2x+x2lnx+1
解答:(1) f(t)={t11t20otherwiseL{f(t)}=0f(t)estdt=21(t1)estdt=[ests2(st+s1)]|21=e2ss2(s1)+ess2L{f(t)}=ess2(1es(s+1))(2) L{y+4y}=L{f(t)}sY(s)y(0)+4Y(s)=ess2(1es(s+1))Y(s)=ess2(s+4)(1es(s+1))y(t)=L1{Y(s)}=L1{ess2(s+4)(1es(s+1))}=L1{ess2(s+4)}L1{se2ss2(s+4)}L1{e2ss2(s+4)}=u(t1)(116+t14+116e4(t1))u(t2)(1414e4(t2))u(t2)(116+t24+116e4(t2))y(t)=u(t1)(116+t14+116e4(t1))u(t2)(316+14(t2)316e4(t2))


解答:{a=4i+6jb=2i+6j6kc=5/2i+3j+1/2k|46026652312|=12+0900+6+72=0They are linear dependent.They are coplanar.
解答:(1)ATA=[4810][4810]=16+64+100=180(2) BTB=[245][245]=[481081620102025](3) A+BT=[4810]+[245]=[6125]
解答:|a(b×c)|=|(3,1,1)((1,4,1)×(1,1,5))|=|(3,1,1)(19,4,3)|=50
解答:A=[210524012]det(AλI)=0(λ2)(λ24λ+5)=0λ=2,2±iλ1=2(Aλ1I)v=0[010504010][x1x2x3]=0{5x1+4x3=0x2=0v=x3(4501),choose v1=(4501)λ2=2i(Aλ2I)v=0[i105i401i][x1x2x3]=0{x1+x3=0x2+ix3=0v=x3(1i1),choose v2=(1i1)λ3=2+i(Aλ3I)v=0[i105i401i][x1x2x3]=0{x1+x3=0x2=ix3v=x3(1i1),choose v3=(1i1)eigenvalues: 2,2±i, eigenvectors: (4501),(1i1),(1i1)

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言