國立中山大學112學年度碩士班暨碩士在職專班招生考試試題
科目名稱:微積分【財管系碩士班甲組】
解答:(a) f(x)=|x|+|x+3|={2x+3x>03−3≤x≤0−2x−3x<−3⇒(1)f(x) is differentiable on x∈R−{0,−3}(2)f′(x)={2x>00−3<x<0−2x<−3(b) g(x)=x|x|={x2x≥0−x2x<0⇒{(1) g(x) is differentiable on x∈R(2) g′(x)={2xx≥0−2xx<0解答:(a) f(x)=x+2x⇒f′(x)=x2−2x2=0⇒x=±√2f′(x)≥0⇒x2−2≥0⇒x≥√2,x≤−√2⇒{(1) f(x) has relative extrema at x=±√2(2) f(x) is increasing for x∈(−∞,−√2]∪[√2,∞)(3) f(x) is decreasing for x∈[−√2,√2],x≠0(b) g(x)=√x−2√x+4⇒g′(x)=√x+4−2√x2√x⋅√x+4=0⇒x=43g′(x)≥0⇒x≤43⇒{(1) g(x) has relative extrema at x=4/3(2) g(x) is increasing for x∈(0,4/3](3) g(x) is decreasing for x∈[4/3,∞)
解答:(a) limx→0+ln(x+1)sinx=limx→0+ddxln(x+1)ddxsinx=limx→0+1(x+1)cosx=1(b) limx→0+xlnx=limx→0+lnx1/x=limx→0+ddxlnxddx1/x=limx→0+(−x)=0(c) L=xx⇒lnL=xlnx⇒limx→0+lnL=limx→0+xlnx=0⇒limx→0+L=e0=1(d) L=(1+1x)x⇒lnL=xln(1+1x)⇒limx→∞lnL=limx→∞ln(1+1/x)1/x=limx→∞ddxln(1+1/x)ddx1/x=limx→0+(x−x2x+1)=limx→∞xx+1=1⇒limx→∞L=e1=e
解答:(a) ddxF(x)=(1+x6)−1⋅2x=2x1+x6(b) ddxF(x)=√1+x2−√1+x4⋅(2x)=√1+x2−2x√1+x4
解答:(a) x=1+t2⇒dx=2tdt⇒∫10t√1+t2dt=12∫21√xdx=12[23x3/2]|21=13(2√2−1)(b) x=1+t3⇒dx=3t2dt⇒∫20t2(1+t3)−1/2dt=13∫91x−1/2dx=13[2√x]|91=43(c) x=1+√t⇒dx=12√tdt⇒∫41√1+√t√tdt=2∫32√xdx=2[23x3/2]|32=43(3√3−2√2)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第三題(d)小題,答案是exp(1).
回覆刪除謝謝,已修訂! 一開始題目就抄錯了..........
刪除