2025年2月13日 星期四

114年台科機械碩士班甲組-工程數學詳解

國立臺灣科技大學114學年度碩士班招生試題

系所組別:機械工程系碩士班甲組
科目:工程數學

解答:y=xmy=mxm1y=m(m1)xm2x2y3xy+3y=m(m1)xm3mxm+3xm=0(m24m+3)xm=0(m3)(m1)=0m=1,3yh=c1x+c2x3{y1=xy2=x3W=|y1y2y1y2|=2x3By variation of parameters,yp=xx32x2ex2x3dx+x3x2x2ex2x3dx=xx2exdx+x3exdx=x(x22x+2)ex+x3ex=(2x22x)exy=yh+ypy=c1x+c2x3+(2x22x)ex
解答:{P(x,y)=x+2yQ(x,y)=2xPy=2=Qx ExactΦ(x,y)=(x+2y)dx=2xdyΦ(x,y)=12x2+2xy+ϕ(y)=2xy+ρ(x)Φ(x,y)=12x2+2xy=c1y=c12x14xy(1)=c1214=0c1=12y=14xx4
解答:(1) L1{6s+3s2+4}=L1{6ss2+22+322s2+22}=6cos(2t)+32sin(2t)(2) L{e2tsin(t)}=L{e2t}L{sin(t)}=1s21s2+12=1(s2)(s2+1)
解答:(1) u=2i+ke=u|u|=25i+15kDef(x,y,z)=fe=(3x2,2yz,y2)(25,0,15)=15(6x2+y2)Def(P)=Def(1,1,1)=75=755(2) {x(t)=ty(t)=1z(t)=2+5t,0t1{x(t)=1y(t)=0z(t)=5I=C(3x2dx+2yzdy+y2dz)=10(3t2,4+10t,1)(1,0,5)dt=10(3t2+5)dt=[t3+5t]|10=6
解答:x2(x2+a2)(x2+b2)dx=z2(z2+a2)(z2+b2)dz=z2(z+ai)(zai)(z+bi)(zbi)dz=2πi(z2(z+ai)(z2+b2)|z=ai+z2(z2+a2)(z+bi)|z=bi)=2πi(a22ai(b2a2)+b2(a2b2)(2bi))=π(ab2a2+ba2b2)=πaba2b2=πa+b
解答:(1) ϕ(x) is a solution0=ϕ+2ϕ(x)=2ϕ(x)=2x+c1ϕ(x)=x2+c1x+c2{θ(1,t)=0θ(0,t)x=0{ϕ(1)=0ϕ(0)=0{1+c1+c2=0c1=0{c1=0c2=1ϕ(x)=x2+1(2) φ(x,t)=X(x)T(t)XT=XTTT=XX=λ=k2<0X+k2X=0X=c1cos(kx)+c2sin(kx)X=c1ksin(kx)+c2kcos(kx){θ(1,t)=0θ(0,t)x=0{X(1)=0X(0)=0{c1cos(k)+c2sin(k)=0c2k=0{c2=0cos(k)=0k=(2n1)π2Xn=Ancos(2n1)πx2,n=1,2,T=k2TTn=Bnek2tφ(x,t)=n=1Cne(2n1)2π2t/4cos(2n1)πx2θ(x,t)=φ(x,t)+ϕ(x)=n=1Cne(2n1)2π2t/4cos(2n1)πx2x2+1Initial condition: θ(x,0)=0=n=1Cncos(2n1)πx2x2+1x21=n=1Cncos(2n1)πx2Cn=210(x21)cos(2n1)πx2dx=216(1)n(2n1)3π3=32(2n1)3π3(1)nφ(x,t)=n=132(2n1)3π3(1)ne(2n1)2π2t/4cos(2n1)πx2


========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

2 則留言:

  1. 第六題的(2),Boundary Condition得知,X(1)=0&X'(0)=0,應該是會推得c_2=0&cos(k)=0,於是" k=(2n-1)*pi/2"才對,所以後面都得改.

    回覆刪除
    回覆
    1. 謝謝提醒,已經算得頭昏眼花,... 修訂完畢!

      刪除