國立臺灣科技大學114學年度碩士班招生試題
系所組別:機械工程系碩士班甲組
科目:工程數學
解答:y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−3xy′+3y=m(m−1)xm−3mxm+3xm=0⇒(m2−4m+3)xm=0⇒(m−3)(m−1)=0⇒m=1,3⇒yh=c1x+c2x3{y1=xy2=x3⇒W=|y1y2y′1y′2|=2x3⇒By variation of parameters,yp=−x∫x3⋅2x2ex2x3dx+x3∫x⋅2x2ex2x3dx=−x∫x2exdx+x3∫exdx=−x(x2−2x+2)ex+x3ex=(2x2−2x)ex⇒y=yh+yp⇒y=c1x+c2x3+(2x2−2x)ex解答:{P(x,y)=x+2yQ(x,y)=2x⇒Py=2=Qx⇒ Exact⇒Φ(x,y)=∫(x+2y)dx=∫2xdy⇒Φ(x,y)=12x2+2xy+ϕ(y)=2xy+ρ(x)⇒Φ(x,y)=12x2+2xy=c1⇒y=c12x−14x⇒y(1)=c12−14=0⇒c1=12⇒y=14x−x4
解答:(1) L−1{6s+3s2+4}=L−1{6⋅ss2+22+32⋅2s2+22}=6cos(2t)+32sin(2t)(2) L{e2t∗sin(t)}=L{e2t}⋅L{sin(t)}=1s−2⋅1s2+12=1(s−2)(s2+1)
解答:(1) →u=2→i+→k⇒→e=→u|→u|=2√5→i+1√5→kD→ef(x,y,z)=∇f⋅→e=(3x2,2yz,y2)⋅(2√5,0,1√5)=1√5(6x2+y2)⇒D→ef(P)=D→ef(1,1,1)=7√5=75√5(2) {x(t)=ty(t)=1z(t)=2+5t,0≤t≤1⇒{x′(t)=1y′(t)=0z′(t)=5⇒I=∫C(3x2dx+2yzdy+y2dz)=∫10(3t2,4+10t,1)⋅(1,0,5)dt=∫10(3t2+5)dt=[t3+5t]|10=6
解答:∫∞−∞x2(x2+a2)(x2+b2)dx=∫∞−∞z2(z2+a2)(z2+b2)dz=∫∞−∞z2(z+ai)(z−ai)(z+bi)(z−bi)dz=2πi(z2(z+ai)(z2+b2)|z=ai+z2(z2+a2)(z+bi)|z=bi)=2πi(−a22ai(b2−a2)+−b2(a2−b2)(2bi))=π(−ab2−a2+−ba2−b2)=π⋅a−ba2−b2=πa+b
解答:(1) ϕ(x) is a solution⇒0=ϕ″+2⇒ϕ″(x)=−2⇒ϕ′(x)=−2x+c1⇒ϕ(x)=−x2+c1x+c2{θ(1,t)=0∂θ(0,t)∂x=0⇒{ϕ(1)=0ϕ′(0)=0⇒{−1+c1+c2=0c1=0⇒{c1=0c2=1⇒ϕ(x)=−x2+1(2) φ(x,t)=X(x)T(t)⇒XT′=X″T⇒T′T=X″X=λ=−k2<0⇒X″+k2X=0⇒X=c1cos(kx)+c2sin(kx)⇒X′=−c1ksin(kx)+c2kcos(kx)⇒{θ(1,t)=0∂θ(0,t)∂x=0⇒{X(1)=0X′(0)=0⇒{c1cos(k)+c2sin(k)=0c2k=0⇒{c2=0cos(k)=0⇒k=(2n−1)π2⇒Xn=Ancos(2n−1)πx2,n=1,2,…T′=−k2T⇒Tn=Bne−k2t⇒φ(x,t)=∞∑n=1Cne−(2n−1)2π2t/4cos(2n−1)πx2⇒θ(x,t)=φ(x,t)+ϕ(x)=∞∑n=1Cne−(2n−1)2π2t/4cos(2n−1)πx2−x2+1⇒Initial condition: θ(x,0)=0=∞∑n=1Cncos(2n−1)πx2−x2+1⇒x2−1=∞∑n=1Cncos(2n−1)πx2⇒Cn=2∫10(x2−1)cos(2n−1)πx2dx=2⋅16(−1)n(2n−1)3π3=32(2n−1)3π3(−1)n⇒φ(x,t)=∞∑n=132(2n−1)3π3(−1)ne−(2n−1)2π2t/4cos(2n−1)πx2
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第六題的(2),Boundary Condition得知,X(1)=0&X'(0)=0,應該是會推得c_2=0&cos(k)=0,於是" k=(2n-1)*pi/2"才對,所以後面都得改.
回覆刪除謝謝提醒,已經算得頭昏眼花,... 修訂完畢!
刪除