國立臺灣科技大學114學年度碩士班招生試題
系所組別:機械工程系碩士班丙組
科目:工程數學
解答:dydx=−4x2y⇒1ydy=−4x2dx⇒∫1ydy=∫−4x2dx⇒lny=−43x3+c1⇒y=e−4x3/3+c1=c2e−4x3/3⇒y(0)=c2=2⇒y=2e−4x3/3
解答:(a) d3ydx3+3d2ydx2+3dydx+y=0⇒λ3+3λ2+3λ+1=0⇒(λ+1)3=0⇒λ=−1⇒yh=c1e−x+c2xe−x+c3x2e−x(b) yp=Ax3e−x⇒y′p=3Ax2e−x−Ax3e−x⇒y″p=6Axe−x−6Ax2e−x+Ax3e−x⇒y‴p=6Ae−x−18Axe−x+9Ax2e−x−Ax3e−x⇒y‴p+3y″p+3y′p+yp=6Ae−x=30e−x⇒A=5⇒yp=5x3e−x
解答:(a) {u=e−stdv=f′(t)dt⇒{du=−se−stdtv=f(t)⇒L{f′(t)}=∫∞0f′(t)e−stdt=[f(t)e−st]|∞0+s∫∞0f(t)e−stdt=0−f(0)+sL{f(t)}⇒L(f′)=sL(f)−f(0)QED(b) By (a), we have L(f″)=sL(f′)−f′(0)=s(sL(f)−f(0))−f′(0)⇒L(f″)=s2L(f)−sf(0)−f′(0)QED(c) f=cosat⇒f′=−asinat⇒L(f′)=sL(f)−f(0)⇒L(−asinat)=sL(cosat)−cos(0)⇒−aL(sinat)=s2s2+a2−1=−a2s2+a2⇒L(sinat)=as2+a2⇒L(tsinat)=−dds(as2+a2)=2as(s2+a2)2
解答:curvature K(x)=|y″(x)|(1+(y′(x))2)3/2)y′<<1⇒K(x)∼|y″|
解答:(a) F(ω)=∫∞−∞f(t)e−jωtdt(b)f(t)=12π∫∞−∞F(ω)ejωtdω(c) F(ω)=∫∞−∞f(t)e−jωtdt=∫T−Te−jωtdt=[−1jωe−jωt]|T−T=−1jω(e−jωT−ejωT)=−1jω(cos(ωT)−jsin(−ωT)−cos(ωT)−jsin(ωT))=−1jω⋅(−2jsin(ωT))=2sin(ωT)ω(d) ∫∞−∞cos(2ω)sin(3ω)ωdω=∫∞−∞12ω(sin(5ω)+sin(ω))dω=12∫∞−∞(sin(5ω)ω+sinωω)dω=12(π+π)=π註:f(t)=∫∞−∞sin(tx)xdx⇒L{f(t)}=∫∞0∫∞−∞sin(tx)xdxe−stdt=∫∞−∞1x∫∞0sin(tx)e−stdtdx=∫∞−∞1xL{sin(tx)}dx=∫∞−∞1xxs2+x2dx=∫∞−∞1s2+x2dx=∮1s2+z2dz=∮1(z+is)(z−is)dz=2πi⋅12is=πs⇒f(t)=L−1{πs}=π
解答:Let u(r,θ)=R(r)Θ(θ)⇒R″Θ+1rR′Θ+1r2RΘ″=0⇒r2R″+rR′R=−Θ″Θ=k2≥0⇒{Θ″+k2Θ=0⋯(1)r2R″+rR′−k2R=0⋯(2)(1)Θ″+k2Θ=0⇒Θ=c1cos(kθ)+c2sin(kθ)⇒Θ′=−c1ksin(kθ)+c2kcos(kθ){uθ(r,0)=R(r)Θ′(0)=0uθ(r,π/2)=R(r)Θ′(π/2)=0⇒{Θ′(0)=0Θ′(π/2)=0⇒{c2k=0−c1ksin(kπ/2)+c2kcos(kπ/2)=0⇒c2=0⇒sin(kπ/2)=0⇒k=2n⇒Θn(θ)=cos(2nθ),n=0,1,2,…(2)r2R″+rR′−k2R=0⇒r2R″+rR′−4n2R=0⇒R=c1r2n+c2r−2n⇒Rn(r)=r2n(∵|u(0,θ)|<∞⇒|R(0)|<∞)un(r,θ)=Ancos(2nθ)Bnr2n⇒u(r,θ)=∞∑n=0Cnr2ncos(2nθ)⇒ur(r,θ)=∞∑n=12nCnr2n−1cos(2nθ)⇒ur(1,θ)=f(θ)=∞∑n=12nCncos(2nθ)⇒2nCn=2π/2∫π/20f(θ)cos(2nθ)dθ⇒Cn=2nπ∫π/20f(θ)cos(2nθ)dθ,n=1,2,…C0=2π∫π/20f(θ)dθf(θ)=sin(2θ)⇒C0=2π∫π/20sin(2θ)dθ=2π[−12cos2θ]|π/20⇒C0=12⇒Cn=2nπ∫π/20sin(2θ)cos(2nθ)dθ=2nπ⋅1+(−1)n2−2n2⇒Cn=1+(−1)nn(1−n2)π
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言