Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年2月12日 星期三

114年台科機械碩士班丙組-工程數學詳解

國立臺灣科技大學114學年度碩士班招生試題

系所組別:機械工程系碩士班丙組
科目:工程數學

解答:dydx=4x2y1ydy=4x2dx1ydy=4x2dxlny=43x3+c1y=e4x3/3+c1=c2e4x3/3y(0)=c2=2y=2e4x3/3

解答:(a) d3ydx3+3d2ydx2+3dydx+y=0λ3+3λ2+3λ+1=0(λ+1)3=0λ=1yh=c1ex+c2xex+c3x2ex(b) yp=Ax3exyp=3Ax2exAx3exyp=6Axex6Ax2ex+Ax3exyp=6Aex18Axex+9Ax2exAx3exyp+3yp+3yp+yp=6Aex=30exA=5yp=5x3ex

解答:(a) {u=estdv=f(t)dt{du=sestdtv=f(t)L{f(t)}=0f(t)estdt=[f(t)est]|0+s0f(t)estdt=0f(0)+sL{f(t)}L(f)=sL(f)f(0)QED(b)  By (a), we have L(f)=sL(f)f(0)=s(sL(f)f(0))f(0)L(f)=s2L(f)sf(0)f(0)QED(c) f=cosatf=asinatL(f)=sL(f)f(0)L(asinat)=sL(cosat)cos(0)aL(sinat)=s2s2+a21=a2s2+a2L(sinat)=as2+a2L(tsinat)=dds(as2+a2)=2as(s2+a2)2


解答:curvature K(x)=|y(x)|(1+(y(x))2)3/2)y<<1K(x)|y|

解答:(a) F(ω)=f(t)ejωtdt(b)f(t)=12πF(ω)ejωtdω(c) F(ω)=f(t)ejωtdt=TTejωtdt=[1jωejωt]|TT=1jω(ejωTejωT)=1jω(cos(ωT)jsin(ωT)cos(ωT)jsin(ωT))=1jω(2jsin(ωT))=2sin(ωT)ω(d) cos(2ω)sin(3ω)ωdω=12ω(sin(5ω)+sin(ω))dω=12(sin(5ω)ω+sinωω)dω=12(π+π)=π:f(t)=sin(tx)xdxL{f(t)}=0sin(tx)xdxestdt=1x0sin(tx)estdtdx=1xL{sin(tx)}dx=1xxs2+x2dx=1s2+x2dx=1s2+z2dz=1(z+is)(zis)dz=2πi12is=πsf(t)=L1{πs}=π


解答:Let u(r,θ)=R(r)Θ(θ)RΘ+1rRΘ+1r2RΘ=0r2R+rRR=ΘΘ=k20{Θ+k2Θ=0(1)r2R+rRk2R=0(2)(1)Θ+k2Θ=0Θ=c1cos(kθ)+c2sin(kθ)Θ=c1ksin(kθ)+c2kcos(kθ){uθ(r,0)=R(r)Θ(0)=0uθ(r,π/2)=R(r)Θ(π/2)=0{Θ(0)=0Θ(π/2)=0{c2k=0c1ksin(kπ/2)+c2kcos(kπ/2)=0c2=0sin(kπ/2)=0k=2nΘn(θ)=cos(2nθ),n=0,1,2,(2)r2R+rRk2R=0r2R+rR4n2R=0R=c1r2n+c2r2nRn(r)=r2n(|u(0,θ)|<|R(0)|<)un(r,θ)=Ancos(2nθ)Bnr2nu(r,θ)=n=0Cnr2ncos(2nθ)ur(r,θ)=n=12nCnr2n1cos(2nθ)ur(1,θ)=f(θ)=n=12nCncos(2nθ)2nCn=2π/2π/20f(θ)cos(2nθ)dθCn=2nππ/20f(θ)cos(2nθ)dθ,n=1,2,C0=2ππ/20f(θ)dθf(θ)=sin(2θ)C0=2ππ/20sin(2θ)dθ=2π[12cos2θ]|π/20C0=12Cn=2nππ/20sin(2θ)cos(2nθ)dθ=2nπ1+(1)n22n2Cn=1+(1)nn(1n2)π

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言