國立臺灣師範大學112學年度碩士班招生考試試題
科目:工程數學
適用系所:電機工程學系
解答:[A∣I]=[−4001000813010035001]R1/(−4)→R1,R2/8→R2→[100−1400011380180035001]R3−3R2→R3→[100−140001138018000180−381]R2−13R3→R2→[100−140001005−1300180−381]8R3→R3→[100−140001005−130010−38]⇒A−1=[−140005−130−38]解答:3y″−24y′+48y=0⇒y″−8y′+16y=0⇒λ2−8λ+16=0⇒(λ−4)2=0⇒λ=4⇒y=c1e4x+c2xe4x
解答:ddtT(t)=k(T(t)−R)⇒ddtT(t)−kT(t)=−kR⇒e−ktddtT(t)−ke−kt=−kRe−kt⇒(e−ktT(t))′=−kRe−kt⇒e−ktT(t)=Re−kt+c0⇒T(t)=R+c0ekt⇒T(0)=R+c0⇒c0=T(0)−R⇒T(t)=R+(T(0)−R)ekt
解答:y″+p(x)y′+q(x)y=0⇒ The Wronskian: y1y′2−y′1y2=e−∫p(x)dx Let y2=v(x)y1⇒y′2=v′y1+vy′1⇒y1(v′y1+vy′1)−y1vy1=e−∫p(x)dx⇒v′y21=e−∫p(x)dx⇒v=∫e−∫p(x)dxy21dx⇒y2=∫e−∫p(x)dxy21dx⋅y1⇒y=c1y1+c2y2⇒y=c1y1+c2∫e−∫p(x)dxy21dx⋅y1QED
解答:L{eatf(t)+f″(t)+t}=L{eatf(t)}+L{f″(t)}+L{t}=F(s−a)+s2F(s)−sf(0)−f′(0)+1s2
解答:1.false:A=0⇒AB=BA=02.false:{(1,1),(0,1)} is a basis in R2, but (1,1)⊥̸(0,1)3.false:A=[2002]⇒rref(A)=[1001]⇒det
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言