國立中正大學113學年度碩士班招生考試
科目名稱:工程數學
系所組別:機械工程學系乙組

解答:rref([1232−1301−1])=I3⇒linear independentQED
解答:(1) A=[−1101−1000−2]⇒det(A−λI)=−λ(λ+2)2=0⇒λ=0,−2λ1=0⇒(A−λ1I)v=0⇒[−1101−1000−2][x1x2x3]=0⇒{x1=x2x3=0⇒v=x2(110), choose v1=(110)λ2=−2⇒(A−λ2I)v=0⇒[110110000][x1x2x3]=0⇒x1+x2=0⇒v=x2(−110)+x3(001), choose v2=(−110),v3=(001)⇒eigenvalues: 0,−2, eigenvectors: (110),(−110),(001)(2) A=[−1101−1000−2]=[1−10110001][0000−2000−2][1/21/20−1/21/20001]⇒eAt=[1−10110001][1000e−2t000e−2t][1/21/20−1/21/20001]=[1/2(1+e−2t)1/2(1−e−2t)0−1/2(1+e−2t)1/2(1+e−2t)000e−2t]X′=AX⇒X=eAtC=[1/2(1+e−2t)1/2(1−e−2t)01/2(1−e−2t)1/2(1+e−2t)000e−2t][c1c2c3]=[12c1(1+e−2t)+12c2(1−e−2t)12c1(1−e−2t)+12c2(1+e−2t)c3e−2t]⇒X=[c4+c5e−2tc4−c5e−2tc3e−2t]
解答:(1) f(x)=x2⇒f(−x)=f(x)⇒f is even⇒bn=0a0=1π∫π−πx2dx=2π∫π0x2dx=2π23an=1π∫π−πx2cos(nx)dx=2π∫π0x2cos(nx)dx=2π⋅2πn2(−1)n=4n2(−1)n⇒f(x)∼π23+∞∑n=14n2(−1)ncos(nx)(2)Parseval's equality: 1π∫π−πf(x)2dx=a202+∞∑n=1(a2n+b2n)⇒1π∫π−πx4dx=25π4=29π4+∞∑n=116n4⇒845π4=16∞∑n=11n4⇒∞∑n=11n4=190π4QED
解答:(1) dxdt+3x=0⇒e3tdxdt+3xe3t=0⇒(xe3t)′=0⇒xe3t=c1⇒xh=c1e−3t(2) xp=Ae−2t⇒x′p=−2Ae−2t⇒x′p+3xp=Ae−2t=e−2t⇒A=1⇒xp=e−2tx=xh+xp=c1e−3t+e−2t⇒x(0)=c1+1=1⇒c1=0⇒x=e−2t
解答:(1) L{dx1dt}=sX1(s)−x1(0)=sX1(s)−1(2) {2x′1−x′2+3x1=1x′1+x′2−4x2=e−t⇒{L{2x′1−x′2+3x1}=L{1}L{x′1+x′2−4x2}=L{e−t}⇒{2(sX1(s)−x1(0))−(sX2(s)−x2(0))+3X1(s)=1/ssX1(s)−x1(0)+sX2(s)−x2(0)−4X2(s)=1/(s+1)⇒{(2s+3)X1(s)−sX2(s)=1s+2sX1(s)+(s−4)X2(s)=1s+1+1⇒{(2s+3)(s−4)X1(s)−s(s−4)X2(s)=s−4s+2(s−4)s2X1(s)+s(s−4)X2(s)=ss+1+s⇒(3s2−5s−12)X1(s)=3s−8+s−4s+ss+1⇒(s−3)(3s+4)X1(s)=3s−6−4s−1s+1⇒X1(s)=3s−6(s−3)(3s+4)−4s(s−3)(3s+4)−1(s+1)(s−3)(3s+4)⇒X1(s)=3s3−3s2−11s−4s(s+1)(s−3)(3s+4)⇒X2(s)=1(s+1)(s−4)+1s−4−ss−4X1(s)=1(s+1)(s−4)+1s−4−ss−4⋅3s3−3s2−11s−4s(s+1)(s−3)(3s+4)⇒X2(s)=3s3+s2−22s−24(s−3)(s−4)(s+1)(3s+4)
解答:(1) A=[−1101−1000−2]⇒det(A−λI)=−λ(λ+2)2=0⇒λ=0,−2λ1=0⇒(A−λ1I)v=0⇒[−1101−1000−2][x1x2x3]=0⇒{x1=x2x3=0⇒v=x2(110), choose v1=(110)λ2=−2⇒(A−λ2I)v=0⇒[110110000][x1x2x3]=0⇒x1+x2=0⇒v=x2(−110)+x3(001), choose v2=(−110),v3=(001)⇒eigenvalues: 0,−2, eigenvectors: (110),(−110),(001)(2) A=[−1101−1000−2]=[1−10110001][0000−2000−2][1/21/20−1/21/20001]⇒eAt=[1−10110001][1000e−2t000e−2t][1/21/20−1/21/20001]=[1/2(1+e−2t)1/2(1−e−2t)0−1/2(1+e−2t)1/2(1+e−2t)000e−2t]X′=AX⇒X=eAtC=[1/2(1+e−2t)1/2(1−e−2t)01/2(1−e−2t)1/2(1+e−2t)000e−2t][c1c2c3]=[12c1(1+e−2t)+12c2(1−e−2t)12c1(1−e−2t)+12c2(1+e−2t)c3e−2t]⇒X=[c4+c5e−2tc4−c5e−2tc3e−2t]
解答:(1) f(x)=x2⇒f(−x)=f(x)⇒f is even⇒bn=0a0=1π∫π−πx2dx=2π∫π0x2dx=2π23an=1π∫π−πx2cos(nx)dx=2π∫π0x2cos(nx)dx=2π⋅2πn2(−1)n=4n2(−1)n⇒f(x)∼π23+∞∑n=14n2(−1)ncos(nx)(2)Parseval's equality: 1π∫π−πf(x)2dx=a202+∞∑n=1(a2n+b2n)⇒1π∫π−πx4dx=25π4=29π4+∞∑n=116n4⇒845π4=16∞∑n=11n4⇒∞∑n=11n4=190π4QED
解答:(1) dxdt+3x=0⇒e3tdxdt+3xe3t=0⇒(xe3t)′=0⇒xe3t=c1⇒xh=c1e−3t(2) xp=Ae−2t⇒x′p=−2Ae−2t⇒x′p+3xp=Ae−2t=e−2t⇒A=1⇒xp=e−2tx=xh+xp=c1e−3t+e−2t⇒x(0)=c1+1=1⇒c1=0⇒x=e−2t
解答:(1) L{dx1dt}=sX1(s)−x1(0)=sX1(s)−1(2) {2x′1−x′2+3x1=1x′1+x′2−4x2=e−t⇒{L{2x′1−x′2+3x1}=L{1}L{x′1+x′2−4x2}=L{e−t}⇒{2(sX1(s)−x1(0))−(sX2(s)−x2(0))+3X1(s)=1/ssX1(s)−x1(0)+sX2(s)−x2(0)−4X2(s)=1/(s+1)⇒{(2s+3)X1(s)−sX2(s)=1s+2sX1(s)+(s−4)X2(s)=1s+1+1⇒{(2s+3)(s−4)X1(s)−s(s−4)X2(s)=s−4s+2(s−4)s2X1(s)+s(s−4)X2(s)=ss+1+s⇒(3s2−5s−12)X1(s)=3s−8+s−4s+ss+1⇒(s−3)(3s+4)X1(s)=3s−6−4s−1s+1⇒X1(s)=3s−6(s−3)(3s+4)−4s(s−3)(3s+4)−1(s+1)(s−3)(3s+4)⇒X1(s)=3s3−3s2−11s−4s(s+1)(s−3)(3s+4)⇒X2(s)=1(s+1)(s−4)+1s−4−ss−4X1(s)=1(s+1)(s−4)+1s−4−ss−4⋅3s3−3s2−11s−4s(s+1)(s−3)(3s+4)⇒X2(s)=3s3+s2−22s−24(s−3)(s−4)(s+1)(3s+4)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第五題(2),X_2(s)錯誤,應是(4s+5)/[(s+1)(s-3)(3s+4)]
回覆刪除