2025年2月23日 星期日

113年中正大學機械碩士班-工程數學詳解

 國立中正大學113學年度碩士班招生考試

科目名稱:工程數學
系所組別:機械工程學系乙組

解答:rref([123213011])=I3linear independentQED
解答:(1) A=[110110002]det(AλI)=λ(λ+2)2=0λ=0,2λ1=0(Aλ1I)v=0[110110002][x1x2x3]=0{x1=x2x3=0v=x2(110), choose v1=(110)λ2=2(Aλ2I)v=0[110110000][x1x2x3]=0x1+x2=0v=x2(110)+x3(001), choose v2=(110),v3=(001)eigenvalues: 0,2, eigenvectors: (110),(110),(001)(2) A=[110110002]=[110110001][000020002][1/21/201/21/20001]eAt=[110110001][1000e2t000e2t][1/21/201/21/20001]=[1/2(1+e2t)1/2(1e2t)01/2(1+e2t)1/2(1+e2t)000e2t]X=AXX=eAtC=[1/2(1+e2t)1/2(1e2t)01/2(1e2t)1/2(1+e2t)000e2t][c1c2c3]=[12c1(1+e2t)+12c2(1e2t)12c1(1e2t)+12c2(1+e2t)c3e2t]X=[c4+c5e2tc4c5e2tc3e2t]
解答:(1) f(x)=x2f(x)=f(x)f is evenbn=0a0=1πππx2dx=2ππ0x2dx=2π23an=1πππx2cos(nx)dx=2ππ0x2cos(nx)dx=2π2πn2(1)n=4n2(1)nf(x)π23+n=14n2(1)ncos(nx)(2)Parseval's equality: 1πππf(x)2dx=a202+n=1(a2n+b2n)1πππx4dx=25π4=29π4+n=116n4845π4=16n=11n4n=11n4=190π4QED
解答:(1) dxdt+3x=0e3tdxdt+3xe3t=0(xe3t)=0xe3t=c1xh=c1e3t(2) xp=Ae2txp=2Ae2txp+3xp=Ae2t=e2tA=1xp=e2tx=xh+xp=c1e3t+e2tx(0)=c1+1=1c1=0x=e2t
解答:(1) L{dx1dt}=sX1(s)x1(0)=sX1(s)1(2) {2x1x2+3x1=1x1+x24x2=et{L{2x1x2+3x1}=L{1}L{x1+x24x2}=L{et}{2(sX1(s)x1(0))(sX2(s)x2(0))+3X1(s)=1/ssX1(s)x1(0)+sX2(s)x2(0)4X2(s)=1/(s+1){(2s+3)X1(s)sX2(s)=1s+2sX1(s)+(s4)X2(s)=1s+1+1{(2s+3)(s4)X1(s)s(s4)X2(s)=s4s+2(s4)s2X1(s)+s(s4)X2(s)=ss+1+s(3s25s12)X1(s)=3s8+s4s+ss+1(s3)(3s+4)X1(s)=3s64s1s+1X1(s)=3s6(s3)(3s+4)4s(s3)(3s+4)1(s+1)(s3)(3s+4)X1(s)=3s33s211s4s(s+1)(s3)(3s+4)X2(s)=1(s+1)(s4)+1s4ss4X1(s)=1(s+1)(s4)+1s4ss43s33s211s4s(s+1)(s3)(3s+4)X2(s)=3s3+s222s24(s3)(s4)(s+1)(3s+4)

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

1 則留言:

  1. 第五題(2),X_2(s)錯誤,應是(4s+5)/[(s+1)(s-3)(3s+4)]

    回覆刪除