國立中央大學113學年度碩士班考試入學試題
所別:統計研究所碩士班
科目:基礎數學
解答:(a) u=x−1⇒I=∫∞−∞(u+1)2e−u2/2du=∫∞−∞u2e−u2/2du+2∫∞−∞ue−u2/2du+∫∞−∞e−u2/2duf(u)=ue−u2/2 is an odd function, then ∫∞−∞ue−u2/2du=0I2=∫∞−∞e−u2/2du⇒I22=∫∞−∞∫∞−∞e−(x2+y2)/2dxdy=∫2π0∫∞0re−r2/2drdθ=∫2π0[−e−r2/2]|∞0dθ=∫2π01dθ=2π⇒I2=√2π{v=udw=ue−u2/2du⇒{dv=duw=−e−u2/2⇒I1=∫∞−∞u2e−u2/2du=[−ue−u2/2]|∞−∞+∫∞−∞e−u2/2du=0+I2=√2π⇒I=I1+I2=√2π+√2π=2√2π(b) ∫10x5(1−x)6dx=∫10x5(1−6x+15x2−20x3+15x4−6x5+x6)dx=∫10(x5−6x6+15x7−20x8+15x9−6x10+x11)dx=[16x6−67x7+158x8−209x9+1510x10−611x11+112x12]|10=16−67+158−209+1510−611+112=15544解答:(a) 1n2+1<1n2,∀n∈N and ∞∑n=11n2 is convergent⇒∞∑n=11n2+1 is convergent(b) an=3nn⋅5n⇒limn→∞an+1an=limn→∞(3n+1(n+1)5n+1⋅n5n3n)=limn→∞(35⋅nn+1)=35<1⇒It is convergent
解答:z=x+y⇒{f(x,y)=x2+y2+(x+y)2g(x,y)=x24+y25+(x+y)225−1⇒{fx=λgxfy=λgyg=0⇒{2x+2(x+y)=λ(x2+225(x+y))⋯(1)2y+2(x+y)=λ(25y+225(x+y))⋯(2)x24+y25+(x+y)225=1⇒(1)(2)=2x+yx+2y=2950x+225y225x+1225y⇒21x2+10xy−6y2=0⇒(3x−2y)(7x+8y)=0⇒{y=3x/2y=−7x/8⇒{z=5x/2z=x/8⇒{g(x,3x/2)=1920x2−1=0⇒x2=20/19⇒x2+yz+z2=10g(x,−7x/8)=323800x2−1=0⇒x2=800/323⇒x2+y2+z2=75/17⇒{maximum: 10minimum: 75/17
解答:A=[460−3−50−3−61]⇒det(A−λI)=−(λ−1)2(λ+2)=0⇒λ=1,−2λ1=1⇒(A−λ1I)v=0⇒[360−3−60−3−60][x1x2x3]=0⇒x1+2x2=0⇒v=x2(−210)+x3(001), choose v1=(−210),v2=(001)λ2=−2⇒(A−λ2I)v=0⇒[660−3−30−3−63][x1x2x3]=0⇒{x1+x3=0x2=x3⇒v=x3(−111), choose v3=(−111)P=[v1v2v3],D=[λ1000λ1000λ2]⇒A=PDP−1⇒A10=PD10P−1⇒A10=(−2−10110011)(110000(−2)10000110)(−1−10120−1−21)=[−1022−20460102320470102320461]
解答:(a) (A11C0A22)(A−111−A−111CA−1220A−122)=(A11A−111−A11A−111CA−122+CA−1220A22A−122)=(I00I)⇒A−1=(A−111−A−111CA−1220A−122)(B110CB22)(B−1110−B−111CB−122B−122)(B110CB22)(B−1110−B−122CB−111B−122)=(B11B−1110CB−111−B22B−122CB−111B22B−122)=(I00I)⇒B−1=(B−1110−B−122CB−111B−122)QED題目有誤,B−1應該是(B−1110−B−122CB−111B−122)(b) {B11=(1112)C=(3725)B22=(2312)⇒{B−111=(2−1−11)B−122=(2−3−12)⇒(1100120037232512)=(B110CB22)⇒(1100120037232512)−1=(B−1110−B−122CB−111B−122)=(2−100−1100−112−31−2−12)
解答:(a) Ax=λx⇒A2x=A(Ax)=A(λx)=λA(x)=λ2x⇒λ2 is the eigenvalue of A2A3x=A(A2x)=A(λ2x)=λ2Ax=λ3x⇒λ3 is the eigenvalue of A3⇒Akx=A(A(⋯(Ax)))=λkx⇒λk is the eigenvalue of AkQED(b) AX=λX⇒AkX=λkX⇒A and Ak have the same eigenvectors⇒X is the eigenvector of Ak associated with λk
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言