Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月2日 星期日

113年中央大學統計碩士班-基礎數學詳解

 國立中央大學113學年度碩士班考試入學試題

所別:統計研究所碩士班
科目:基礎數學

解答:(a) u=x1I=(u+1)2eu2/2du=u2eu2/2du+2ueu2/2du+eu2/2duf(u)=ueu2/2 is an odd function, then ueu2/2du=0I2=eu2/2duI22=e(x2+y2)/2dxdy=2π00rer2/2drdθ=2π0[er2/2]|0dθ=2π01dθ=2πI2=2π{v=udw=ueu2/2du{dv=duw=eu2/2I1=u2eu2/2du=[ueu2/2]|+eu2/2du=0+I2=2πI=I1+I2=2π+2π=22π(b) 10x5(1x)6dx=10x5(16x+15x220x3+15x46x5+x6)dx=10(x56x6+15x720x8+15x96x10+x11)dx=[16x667x7+158x8209x9+1510x10611x11+112x12]|10=1667+158209+1510611+112=15544
解答:(a) 1n2+1<1n2,nN and n=11n2 is convergentn=11n2+1 is convergent(b) an=3nn5nlimnan+1an=limn(3n+1(n+1)5n+1n5n3n)=limn(35nn+1)=35<1It is  convergent
解答:z=x+y{f(x,y)=x2+y2+(x+y)2g(x,y)=x24+y25+(x+y)2251{fx=λgxfy=λgyg=0{2x+2(x+y)=λ(x2+225(x+y))(1)2y+2(x+y)=λ(25y+225(x+y))(2)x24+y25+(x+y)225=1(1)(2)=2x+yx+2y=2950x+225y225x+1225y21x2+10xy6y2=0(3x2y)(7x+8y)=0{y=3x/2y=7x/8{z=5x/2z=x/8{g(x,3x/2)=1920x21=0x2=20/19x2+yz+z2=10g(x,7x/8)=323800x21=0x2=800/323x2+y2+z2=75/17{maximum: 10minimum: 75/17
解答:A=[460350361]det(AλI)=(λ1)2(λ+2)=0λ=1,2λ1=1(Aλ1I)v=0[360360360][x1x2x3]=0x1+2x2=0v=x2(210)+x3(001), choose v1=(210),v2=(001)λ2=2(Aλ2I)v=0[660330363][x1x2x3]=0{x1+x3=0x2=x3v=x3(111), choose v3=(111)P=[v1v2v3],D=[λ1000λ1000λ2]A=PDP1A10=PD10P1A10=(210110011)(110000(2)10000110)(110120121)=[102220460102320470102320461]
解答:(a) (A11C0A22)(A111A111CA1220A122)=(A11A111A11A111CA122+CA1220A22A122)=(I00I)A1=(A111A111CA1220A122)(B110CB22)(B1110B111CB122B122)(B110CB22)(B1110B122CB111B122)=(B11B1110CB111B22B122CB111B22B122)=(I00I)B1=(B1110B122CB111B122)QED,B1(B1110B122CB111B122)(b) {B11=(1112)C=(3725)B22=(2312){B111=(2111)B122=(2312)(1100120037232512)=(B110CB22)(1100120037232512)1=(B1110B122CB111B122)=(2100110011231212)
解答:(a) Ax=λxA2x=A(Ax)=A(λx)=λA(x)=λ2xλ2 is the eigenvalue of A2A3x=A(A2x)=A(λ2x)=λ2Ax=λ3xλ3 is the eigenvalue of A3Akx=A(A((Ax)))=λkxλk is the eigenvalue of AkQED(b) AX=λXAkX=λkXA and Ak have the same eigenvectorsX is the eigenvector of Ak associated with λk


========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言