國立成功大學113學年度碩士班招生考試試題
系所:環境醫學研究所
考試科目:微積分
解答:(a) limx→0(cos2x−1)sinxx2=limx→0((cos2x−1)sinx)′(x2)′=limx→0−sin(2x)sinx+(cos2x−1)cosx2x=limx→0(−sin(2x)sinx+(cos2x−1)cosx)′(2x)′=limx→0−2cos(2x)sinx−sin(2x)cosx−(cos2x−1)sinx−sin(2x)sinxcosx2=02=0(b) x=1+a⇒limx→1+[x]2−[x2]x2−1=lima→0+[1+a]2−[(1+a)2](1+a)2−1=lima→0+1−[1+2a+a2]a2+2a=lima→0+1−1a2+2a=0(c) [x]=x−{x}⇒limx→−∞1+[x]5x−6=limx→−∞x+1−{x}5x−6=15(d) limn→+∞(1√n2+2n+1√n2+4n+⋯+1√n2+2n2)=limn→+∞n∑k=11√n2+2kn=limn→+∞n∑k=11n√1+2(kn)=∫101√1+2xdx=[√1+2x]|10=√3−1解答:By comparison test, ak>ln(1+ak),∀ak>0⇒∞∑k=1ak converges, then ∞∑k=1ln(1+ak) convergesQED
解答:z=x−u⇒∫∞−∞1√2πe−(x−μ)2/2dx=∫∞−∞1√2πe−z2/2dz=1⇒I=∫∞−∞x2√2πe−(x−μ)2/2dx=∫∞−∞(z+μ)2√2πe−z2/2dz=∫∞−∞z2√2πe−z2/2dz+∫∞−∞2μz√2π+∫∞−∞μ2√2πe−z2/2dz=∫∞−∞z2√2πe−z2/2dz+0+μ2let {u=zdv=z√2πe−z2/2dz, then {du=dzv=−1√2πe−z2/2⇒∫∞−∞z2√2πe−z2/2dz=[−z√2πe−z2/2]|∞−∞+∫∞−∞1√2πe−z2/2dz=0+1⇒I=1+0+μ2=1+μ2
解答:g(x,y)=∫x2+lny0cost3dt⇒{∂g∂x=cos(x2+lny)3⋅∂∂x(x2+lny)=2xcos(x2+lny)3∂g∂y=cos(x2+lny)3⋅∂∂y(x2+lny)=1ycos(x2+lny)2⇒{∂g∂x=2xcos(x2+lny)3∂g∂y=1ycos(x2+lny)2
解答:z=x−u⇒∫∞−∞1√2πe−(x−μ)2/2dx=∫∞−∞1√2πe−z2/2dz=1⇒I=∫∞−∞x2√2πe−(x−μ)2/2dx=∫∞−∞(z+μ)2√2πe−z2/2dz=∫∞−∞z2√2πe−z2/2dz+∫∞−∞2μz√2π+∫∞−∞μ2√2πe−z2/2dz=∫∞−∞z2√2πe−z2/2dz+0+μ2let {u=zdv=z√2πe−z2/2dz, then {du=dzv=−1√2πe−z2/2⇒∫∞−∞z2√2πe−z2/2dz=[−z√2πe−z2/2]|∞−∞+∫∞−∞1√2πe−z2/2dz=0+1⇒I=1+0+μ2=1+μ2
解答:g(x,y)=∫x2+lny0cost3dt⇒{∂g∂x=cos(x2+lny)3⋅∂∂x(x2+lny)=2xcos(x2+lny)3∂g∂y=cos(x2+lny)3⋅∂∂y(x2+lny)=1ycos(x2+lny)2⇒{∂g∂x=2xcos(x2+lny)3∂g∂y=1ycos(x2+lny)2
解答:limx→0f(ax)−f(bx)cx=limx→0(f(ax)−f(bx))′(cx)′=limx→0af′(ax)−bf′(bx)c=(a−bc)f′(0)
解答:I=∫10∫1xtan−1ydydx=∫10∫y0tan−1ydxdy=∫10ytan−1ydy{u=tan−1ydv=ydy⇒{du=1y2+1dyv=12y2⇒I=12y2tan−1y|10−12∫10y2y2+1dy=π8−12∫10(1−1y2+1)dy=π8−12[y−tan−1y]|10=π8−12(1−π4)=π4−12
解答:{x=rcosθy=rsinθ⇒∬Kcos(x2+y2)dxdy=∫π/20∫10rcosr2drdθ=∫π/20[12sinr2]|10dθ=∫π/2012sin1dθ=πsin14
解答:I=∫10∫1xtan−1ydydx=∫10∫y0tan−1ydxdy=∫10ytan−1ydy{u=tan−1ydv=ydy⇒{du=1y2+1dyv=12y2⇒I=12y2tan−1y|10−12∫10y2y2+1dy=π8−12∫10(1−1y2+1)dy=π8−12[y−tan−1y]|10=π8−12(1−π4)=π4−12
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第7題,theta的範圍是0~(pi/2) 不是0~2*pi
回覆刪除喔! 謝謝告知, 已修訂
刪除