Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月2日 星期日

113年成功大學環境醫學碩士班-微積分詳解

國立成功大學113學年度碩士班招生考試試題

系所:環境醫學研究所
考試科目:微積分

解答:(a) limx0(cos2x1)sinxx2=limx0((cos2x1)sinx)(x2)=limx0sin(2x)sinx+(cos2x1)cosx2x=limx0(sin(2x)sinx+(cos2x1)cosx)(2x)=limx02cos(2x)sinxsin(2x)cosx(cos2x1)sinxsin(2x)sinxcosx2=02=0(b) x=1+alimx1+[x]2[x2]x21=lima0+[1+a]2[(1+a)2](1+a)21=lima0+1[1+2a+a2]a2+2a=lima0+11a2+2a=0(c) [x]=x{x}limx1+[x]5x6=limxx+1{x}5x6=15(d) limn+(1n2+2n+1n2+4n++1n2+2n2)=limn+nk=11n2+2kn=limn+nk=11n1+2(kn)=1011+2xdx=[1+2x]|10=31
解答:By comparison test, ak>ln(1+ak),ak>0k=1ak converges, then k=1ln(1+ak) convergesQED
解答:z=xu12πe(xμ)2/2dx=12πez2/2dz=1I=x22πe(xμ)2/2dx=(z+μ)22πez2/2dz=z22πez2/2dz+2μz2π+μ22πez2/2dz=z22πez2/2dz+0+μ2let {u=zdv=z2πez2/2dz, then {du=dzv=12πez2/2z22πez2/2dz=[z2πez2/2]|+12πez2/2dz=0+1I=1+0+μ2=1+μ2

解答:g(x,y)=x2+lny0cost3dt{gx=cos(x2+lny)3x(x2+lny)=2xcos(x2+lny)3gy=cos(x2+lny)3y(x2+lny)=1ycos(x2+lny)2{gx=2xcos(x2+lny)3gy=1ycos(x2+lny)2
解答:limx0f(ax)f(bx)cx=limx0(f(ax)f(bx))(cx)=limx0af(ax)bf(bx)c=(abc)f(0)
解答:I=101xtan1ydydx=10y0tan1ydxdy=10ytan1ydy{u=tan1ydv=ydy{du=1y2+1dyv=12y2I=12y2tan1y|101210y2y2+1dy=π81210(11y2+1)dy=π812[ytan1y]|10=π812(1π4)=π412


解答:{x=rcosθy=rsinθKcos(x2+y2)dxdy=π/2010rcosr2drdθ=π/20[12sinr2]|10dθ=π/2012sin1dθ=πsin14

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

2 則留言: