2025年3月25日 星期二

114年身障升大學-數學A詳解

114 學年度身心障礙學生升學大專校院甄試

甄試類(群)組別:大學組-數學 A

解答:y=f(x)=ax2+bx+5{f(2)=4a+2+5=1f(4)=16a+4b+5=5{a=1b=4y=f(x)=x24x+5=(x2)2+1(2,1)(B)
解答:{A:100±5%B:200±11%{100(15%)A100(1+5%)200(111%)B200(1+11%){95A105178B222273A+B32730027A+B300+2727300=9%(C)
解答:{a1=7/2a2=2d=a2a1=32a3=2+32=12a4=12+32=1r=a4a3=2a5=a4r=2a6=22=4{a3=1/2a4=1a5=2a6=4a5<1(C)
解答:a,b,cb=6(a,b,c)=(7,6,811),(8,6,{7,911}),(9,6,{7,8,10,11}),(10,6,{79,11}),(11,6,710),5×4=20b=8,10,20b60:(a,b,c)=({6,7}8,911),(69,10,11),6+4=101060=16(D)
解答:{a=3/2b=9{loga=log3log2=0.47710.301=0.1761logb=log9=2×0.4771=0.9542{(A)3loga+logb=1.4825(B)loga+2logb=2.0845(C)logab=logb/loga5.4(D)logba=loga/logb0.18(C)
解答:{xy,x+2y=5{(x,y)=(1,2)C61C52=60(x,y)=(3,1)C63C51=100(x,y)=(5,0)C65C50=660+100+6=166(D)
解答:



O(a,a),y=2xA,BP¯AB¯OP=|a|5¯OA2=¯PA2+¯OP232=1+a25210(C)
解答:{a=(cosθ,sinθ)b=(sinθ,cosθ)3a+4b=(3cosθ4sinθ,4cosθ+3sinθ)(1,2)(3a+4b)=(1,2)(3cosθ4sinθ,4cosθ+3sinθ)=11cosθ+2sinθ=112+22=125=55(A)
解答:[abcd]=[cosθsinθsinθcosθ]ad+bc=cos2θsin2θ=2cos2θ1=725cos2θ=1625a=cosθ=±45(C)
解答:1a503535250<a10030653100<a15020854150<a20010955200<a51001303k=77,350(C)
解答:L:(1+t,t,t),tRu=(1,1,1)A(1,0,0)LP(1,2,4)AP=(0,2,4)cosθ=APu|AP||u|=6215sinθ=25r=|AP|sinθ2525=22=r2π=8π(B)
解答:f(x)=x3+ax2f(x)=3x2+2axf(x)=6x+2af(x)=0x=a3f(a3)=12a232a23=12a=±6a3=±2(B)
解答:{x=2ay=2b{2a=2b24a=4b12{x=y2x2=y212{xy=2(x2y2)=(x+y)(xy)=12{xy=2x+y=6{x=2=2ay=4=2b{a=1b=2ab=1(B)
解答:12×100500+32×50500+16×50500=1350500=2.7(C)
解答:{ax+by=1cx+dy=2ac=bd=12{c=2ad=2b{ax+by+2z=1cx+dy+z=1x+yz=0{ax+by+2z=12ax+2by+z=1z=x+y{(a+2)x+(b+2)y=1(2a+1)x+(2b+1)y=1a+22a+1=b+22b+1=11a=b=1(A)
解答:Q=(a,b){|OP+OQ|=3|OPOQ|=7{(a+2)2+(b+3)2=32(a2)2+(b3)2=72{a2+4a+4+b2+6b+9=9a24a+4+b26b+9=49a2+b2=16|OQ|=a2+b2=4(A)
解答:


BAD=12¯AB¯ADsinBAD1255sinBAD=12sinBAD=2425cosBAD=725=¯AB2+¯AD2¯BD22¯AB¯AD=50¯BD250¯BD=8cosBCD=cosBAD=725=¯BC2+¯CD2¯BD22¯BC¯CD=¯CD23910¯CD¯CD=395(A)
解答:OAL(1,a,b)OA=k(1,a,b)=(k,ak,bk)OA(4,2,4)=4k+2ak+4bk=3a+2b=3+4k2k=m4k=2mkm=2(B)
解答:Q,Rx+y+z=1,{Q(a,b,1ab)R(c,d,1cd){OQOP=(a,b,1ab)(1,1,0)=a+b=0OROP=(c,d,1cd)(1,1,0)=c+d=0{Q(a,a,1)R(c,c,1){¯OQ=2a2+1=3¯OR=2c2+1=3{a=±2c=±2{Q(2,2,1)R(2,2,1){Q(2,2,1)R(2,2,1)OQOR=44+1=7(B)
解答:{a1x+a2y+a3z=m1b1x+b2y+b3z=m2c1x+c2y+c3z=m3(1,0,0),(1,1,0),(2,4,1),(3,6,2)c1x+c2y+c3z=m3{c1=m3c2+c2=m32c1+4c2+c3=m33c1+6c2+2c3=m3{c1=m3c2=0c3=m3m3xm3z=m3xz=1(D)


======================== END ===========================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言