國立臺灣大學114學年度碩士班招生考試
科目:線性代數(C)
解答:(a)false:Suppose →u and →v are linearly independent, then S={→v,2→v,→u} is a linearly dependent set. But →u cannot be a combination of →v and 2→v(b)true:A=PBP−1⇒A→v=PBP−1→v=λv⇒B(P−1→v)=λ(P−1→v)⇒A and B have the same eigenvalue λ(c)false:這題在考英文,不是考數學.無論system of linear equations有幾個解, homogeneous system一定有一個解→x=→0(d)false:If ker(A−λI)>1(有重根), then you can find at least two independent vectors.(e)false:Only the first (not both) component

解答:2M−A=[84261022862412]−[531262151033]=[311440135219]⇒∑ij(2M−A)ij=3+1+1+4+4+1+3+5+2+1+9=34
解答:A=(1423)=(−2111)(−1005)(−13131323)⇒An=(1423)=(−2111)((−1)n005n)(−13131323)=(13(2(−1)n+5n)23((−1)n+1+5n)13((−1)n+1)+5n13((−1)n+2⋅5n))
解答:(2,3)=−(1,0)+3(1,1)⇒T(2,3)=−T(1,0)+3T(1,1)=(−1,−4)+(6,15)⇒T(2,3)=(5,11)Yes, T is one-to-one,because (1,0) and (1,1) are linearly independent
解答:A=[10a1d−1−1b−2e31c0f]R1+R2→R2,R3−3R1→R3→[10a1d0−1a+b−1d+e01c−3a−3f−3d]R2+R3→R3→[10a1d0−1a+b−1d+e00−2a+b+c−4−2d+e+f]R1+R3/4→R1,−R2→R2→[10(2a+b+c)/40(2d+e+f)/401−a−b1−d−e00−2a+b+c−4−2d+e+f]R2+R3/4→R2→[10(2a+b+c)/40(2d+e+f)/401(−6a−3b+c)/40(−6d−3e+f)/400−2a+b+c−4−2d+e+f]R3/(−4)→R3→[10(2a+b+c)/40(2d+e+f)/401(−6a−3b+c)/40(−6d−3e+f)/400(−2a+b+c)/(−4)1(−2d+e+f)/−4]=[1020−201−50−300016]⇒{2a+b+c=82d+e+f=−8−6a−3b+c=−20−6d−3e+f=−12−2a+b+c=0−2d+e+f=−24⇒{a=2b=3c=1d=4e=−7f=−9⇒A=[10214−1−13−2−73110−9]====================== END ==========================
解題僅供參考,其他碩士班試題及詳解
您好,想問一下,這份後面還有7,8兩題?是沒注意到 還是?
回覆刪除真的嗎?我再查查看!
刪除