2025年3月30日 星期日

114年台大碩士班-線性代數(C)詳解

 國立臺灣大學114學年度碩士班招生考試

科目:線性代數(C)

解答:(a)false:Suppose u and v are linearly independent, then S={v,2v,u} is a linearly dependent set. But u cannot be  a combination of v and 2v(b)true:A=PBP1Av=PBP1v=λvB(P1v)=λ(P1v)A and B have the same eigenvalue λ(c)false:.system of linear equations homogeneous systemx=0(d)false:If ker(AλI)>1(), then you can   find at least two independent vectors.(e)false:Only the first (not both) component


解答:2MA=[84261022862412][531262151033]=[311440135219]ij(2MA)ij=3+1+1+4+4+1+3+5+2+1+9=34

解答:A=[110010120]{A[000]=A[001]=[000]A[100]=[101]A[010]=[112]Let {u=(1,0,1)v=(1,1,2)Area of the image C=12|u|2|v|2(uv)2=123
解答:A=(1423)=(2111)(1005)(13131323)An=(1423)=(2111)((1)n005n)(13131323)=(13(2(1)n+5n)23((1)n+1+5n)13((1)n+1)+5n13((1)n+25n))
解答:(2,3)=(1,0)+3(1,1)T(2,3)=T(1,0)+3T(1,1)=(1,4)+(6,15)T(2,3)=(5,11)Yes, T is one-to-one,because (1,0) and (1,1) are linearly independent
解答:A=[10a1d11b2e31c0f]R1+R2R2,R33R1R3[10a1d01a+b1d+e01c3a3f3d]R2+R3R3[10a1d01a+b1d+e002a+b+c42d+e+f]R1+R3/4R1,R2R2[10(2a+b+c)/40(2d+e+f)/401ab1de002a+b+c42d+e+f]R2+R3/4R2[10(2a+b+c)/40(2d+e+f)/401(6a3b+c)/40(6d3e+f)/4002a+b+c42d+e+f]R3/(4)R3[10(2a+b+c)/40(2d+e+f)/401(6a3b+c)/40(6d3e+f)/400(2a+b+c)/(4)1(2d+e+f)/4]=[102020150300016]{2a+b+c=82d+e+f=86a3b+c=206d3e+f=122a+b+c=02d+e+f=24{a=2b=3c=1d=4e=7f=9A=[102141132731109]

====================== END ==========================
解題僅供參考,其他碩士班試題及詳解


2 則留言:

  1. 您好,想問一下,這份後面還有7,8兩題?是沒注意到 還是?

    回覆刪除