國立中山大學114學年碩士班考試入學招生考試
科目名稱:工程數學【離岸風電碩士班碩士班選考、海工系碩士班選考、海工聯合碩士班選考】
解答:λ2−4λ+4=(λ−2)2=0⇒λ=2⇒y=c1e2x+c2xe2x⇒y′=(2c1+c2)e2x+2c2xe2x⇒{y(0)=c1=3y′(0)=2c1+c2=1⇒{c1=3c2=−5⇒y=3e2x−5xe2x解答:y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−3xy′+4y=m(m−1)xm−3mxm+4xm=(m2−4m+4)xm=0⇒(m−2)2=0⇒m=2⇒y=c1x2+c2x2lnx
解答:[−1121003−11010−134001]3R1+R2→R2,R3−R1→R3→[−112100027310022−101]−R1→R1,R3−R2→R3→[1−1−2−10002731000−5−4−11]R2/2→R2,R3/(−5)→R3→[1−1−2−1000172321200014515−15]R1+R2→R2→[1032121200172321200014515−15]R1−(3/2)R3→R1,R2−(7/2)R3→R2→[100−71015310010−1310−157100014515−15]⇒[−1123−11−134]−1=[−71015310−1310−157104515−15]
解答:(1) div xyz(xi+yj+zk)=div (x2yzi+xy2zj+xyz2k)=∂∂x(x2yz)+∂∂y(xy2z)+∂∂z(xyz2)=2xyz+2xyz+2xyz=6xyz(2) curl xyz(xi+yj+zk)=curl (x2yzi+xy2zj+xyz2k)=|ijk∂∂x∂∂y∂∂zx2yzxy2zxyz2|=(xz2−xy2)i+(x2y−yz2)j+(y2z−x2z)k
解答:L{eat}=∫∞0eat⋅e−stdt=∫∞0e−(s−a)tdt=[−1s−ae−(s−a)t]|∞0=1s−a
解答:A=[−22−321−6−1−20]⇒det
解答:f(-x)=-f(x) \Rightarrow f(x) \text{ is odd} \Rightarrow a_n=0\\ b_n={1\over \pi} \int_{-\pi}^\pi f(x) \sin(nx)\,dx ={2\over \pi}\int_0^\pi k\sin(nx)\,dx ={2k\over n\pi}(1-(-1)^n) \\ \Rightarrow \bbox[red, 2pt]{f(x)=\sum_{n=1}^\infty {2k\over n\pi}(1-(-1)^n) \sin(nx)\,dx}
解答:\text{Suppose }u(x,t)=X(x)T(t), \text{ then} {\partial^2u \over \partial t^2} =c^2{\partial^2 u\over \partial x^2} \Rightarrow XT'' = c^2X''T \Rightarrow {T''\over c^2T} ={X''\over X}= \alpha\\ \text{B.C.: }\cases{u(0,t)=X(0)T(t)=0\\ u(L,t)= X(L)T(t)=0} \Rightarrow \cases{X(0)=0\\ X(L)=0} \\ \textbf{Case I }\alpha=0 \Rightarrow X''=0 \Rightarrow X=c_1x+c_2 \Rightarrow B.C.: \cases{X(0)=c_2=0\\ X(L)=c_1L+c_2=0} \Rightarrow \cases{c_1=0\\ c_2=0}\\\qquad \Rightarrow X=0 \Rightarrow u=0\\ \textbf{Case II } \alpha=\rho^2 \gt 0 \Rightarrow X''-\rho^2X=0 \Rightarrow X=c_1e^{\rho x}+ c_2 e^{-\rho x} \\\qquad \Rightarrow \text{B. C.: }\cases{X(0)= c_1+c_2=0 \\ X(L)= c_1e^{\rho L}+ c_2e^{-\rho L}=0} \Rightarrow c_1e^{\rho L}- c_1e^{-\rho L}=0 \Rightarrow c_1(e^{2\rho L}-1)=0 \\\qquad \Rightarrow c_1=0 \Rightarrow c_2=0 \Rightarrow X=0 \Rightarrow u=0\\ \textbf{Case III }\alpha= -\rho^2 \lt 0 \Rightarrow X''+\rho^2 X=0 \Rightarrow X=c_1\cos (\rho x)+c_2\sin (\rho x)\\\qquad \Rightarrow B.C.: \cases{X(0)=c_1=0\\ X(L)=c_1\cos(\rho L) +c_2\sin(\rho L)=0} \Rightarrow \sin(\rho L)=0 \Rightarrow \rho L=n\pi \Rightarrow \rho={n\pi\over L}\\ \qquad \Rightarrow X_n= c_2\sin({n\pi x\over L}),n=1,2,\dots \\\Rightarrow T''+ \rho^2c^2 T=0 \Rightarrow T=c_3\cos(\rho c t)+ c_4\sin(\rho c t) \Rightarrow T_n=c_3 \cos({nc \pi t\over L}) + c_4\sin ({nc \pi t\over L}) \\ \Rightarrow u_n= c_2\sin({n\pi x\over L})\left( c_3 \cos({nc \pi t\over L}) + c_4\sin ({nc \pi t\over L}) \right) \\ \Rightarrow u(x,t)= \sum_{n= 1}^\infty \sin({n\pi x\over L})\left( a_n \cos({nc \pi t\over L}) + b_n\sin ({nc \pi t\over L}) \right) \\ \Rightarrow u_t(x,t)=\sum_{n=1}^\infty \sin({n\pi x\over L}) \left(-a_n{nc\pi\over L}\sin {nc\pi t\over L}+ b_n{nc\pi\over L} \cos{nc\pi t\over L} \right)\\\text{I.C.: } u(x,0)= \sum_{n=1}^\infty a_n\sin({n\pi x\over L}) =\sin{\pi x\over L} \Rightarrow \begin{cases}a_1=1\\ a_n=0, & n\ne 1 \end{cases} \\ \text{I.C.: } u_t(x,0)=\sum_{n=1}^\infty b_n{nc\pi\over L}\sin({n\pi x\over L}) =0 \Rightarrow b_n=0 \\ \Rightarrow \bbox[red, 2pt] {u(x,t)=\sin{\pi x\over L}\cos {c\pi t\over L}}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言