Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2025年3月20日 星期四

114年中山大學資工碩士班-工程數學詳解

 國立中山大學114學年碩士班考試入學招生考試

科目名稱:工程數學【資工系碩士班乙組】



             
解答:{2x2+3x3+4x4=1x13x2+4x3+5x4=23x1+10x26x37x4=4[0234134531067][x1x2x3x4]=[124][0234113452310674]R3+3R2R3[023411345201682]R1R2[134520234101682]R1+3R3R1,R22R3R2[102229800912301682]R2R3[102229801682009123](1/9)R3R3[1022298016820014313]R122R3R2,R26R3R2[1001323010000014313]{x113x4=23x2=0x3+43x4=13 solutions of the system: {(23+13t,0,1343t,t),tR}
解答:(2.1) det([2003100007320162211400043])=det([0000720031320162211400043])=7det([2003320122110004])=7det([0004320122112003])=28det([320221200])=28det([200221320])=56det([2120])=112(2.2) [1bb2bb2b3b2b3b4]R2bR1R2[1bb2000b2b3b4]det([1bb2bb2b3b2b3b4])=det([1bb2000b2b3b4])=0
解答:(3.1) λ2+5λ+6=0(λ+3)(λ+2)=0λ=2,3x(t)=c1e2t+c2e3tx(t)=2c1e2t3c2e3t{x(0)=c1+c2=2x(0)=2c13c2=3{c1=9c2=7x(t)=9e2t7e3t(3.2) x(t)=18e2t+21e3t=06e2t=7e3tet=76t=ln76x(ln76)=9(7/6)27(7/6)3=36272=10849
解答:xp=Acost+Bsintxp=Asint+Bcostxp
解答:2L\{x''\}+ L\{x'\}+ 2L\{x\}=L\{\delta(t-5)\} \Rightarrow 2s^2X(s)+ sX(s) +2X(s) =e^{-5s} \\ \Rightarrow X(s)={e^{-5s} \over 2s^2+ s+2} \Rightarrow x(t) =L^{-1}\{X(s)\} = L^{-1}\{ {e^{-5s} \over 2s^2+ s+2}\} \\ L^{-1}\left\{{1\over 2s^2+s+2}\right\} = L^{-1}\left\{{1\over 2 }\cdot {1\over (s+{1\over 4})^2+ {15 \over 16}}\right\} = {1\over 2}e^{-t/4} \cdot {4\over \sqrt{15}} \sin{\sqrt{15} t \over 4} ={2\over \sqrt{15}}e^{-t/4} \sin{\sqrt{15}t\over 4} \\ \Rightarrow L^{-1} \left\{{e^{-5s}\over 2s^2+s+2}\right\} =\bbox[red, 2pt]{x(t) = {2\over \sqrt{15}} e^{-(t-5)/4} \sin{\sqrt{15}(t-5)\over 4}u(t-5)}
解答:\textbf{(6.1)
\textbf{(6.2) }f(-x)=-f(x) \Rightarrow f(x) \text{ is odd }\Rightarrow a_n=0\\\qquad b_n= {4\over \pi}\int_0^{\pi/2} 2x^2 \sin(2nx)\,dx = {8\over \pi } \cdot  \left(({1\over 4n^3}-{\pi^2 \over 8n})(-1)^n -{1\over 4n^3}\right)\\ = \left({2\over n^3\pi}-{\pi\over n} \right)(-1)^n-{2\over n^3\pi}  \Rightarrow \bbox[red, 2pt]{f(x) =\sum_{n=1}^\infty \left( \left({2\over n^3\pi}-{\pi\over n} \right)(-1)^n-{2\over n^3\pi} \right) \sin(2n x)}

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言