國立中山大學114學年碩士班考試入學招生考試
科目名稱:工程數學【資工系碩士班乙組】
解答:{2x2+3x3+4x4=1x1−3x2+4x3+5x4=2−3x1+10x2−6x3−7x4=−4⇒[02341−345−310−6−7][x1x2x3x4]=[12−4]⇒[023411−3452−310−6−7−4]R3+3R2→R3→[023411−345201682]R1↔R2→[1−34520234101682]R1+3R3→R1,R2−2R3→R2→[102229800−9−12−301682]R2↔R3→[10222980168200−9−12−3](−1/9)R3→R3→[1022298016820014313]R1−22R3→R2,R2−6R3→R2→[100−1323010000014313]⇒{x1−13x4=23x2=0x3+43x4=13⇒ solutions of the system: {(23+13t,0,13−43t,t),t∈R}
解答:(2.1) det([200−3100007−320−1−62−2−11400043])=−det([00007200−31−320−1−62−2−11400043])=−7det([200−3−320−12−2−110004])=7det([0004−320−12−2−11200−3])=−28det([−3202−2−1200])=28det([2002−2−1−320])=56det([−2−120])=112(2.2) [1bb2bb2b3b2b3b4]R2−bR1→R2→[1bb2000b2b3b4]⇒det([1bb2bb2b3b2b3b4])=det([1bb2000b2b3b4])=0解答:(3.1) λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−2,−3⇒x(t)=c1e−2t+c2e−3t⇒x′(t)=−2c1e−2t−3c2e−3t⇒{x(0)=c1+c2=2x′(0)=−2c1−3c2=3⇒{c1=9c2=−7⇒x(t)=9e−2t−7e−3t(3.2) x′(t)=−18e−2t+21e−3t=0⇒6e−2t=7e−3t⇒et=76⇒t=ln76⇒x(ln76)=9(7/6)2−7(7/6)3=3⋅6272=10849
解答:xp=Acost+Bsint⇒x′p=−Asint+Bcost⇒xp″
解答:2L\{x''\}+ L\{x'\}+ 2L\{x\}=L\{\delta(t-5)\} \Rightarrow 2s^2X(s)+ sX(s) +2X(s) =e^{-5s} \\ \Rightarrow X(s)={e^{-5s} \over 2s^2+ s+2} \Rightarrow x(t) =L^{-1}\{X(s)\} = L^{-1}\{ {e^{-5s} \over 2s^2+ s+2}\} \\ L^{-1}\left\{{1\over 2s^2+s+2}\right\} = L^{-1}\left\{{1\over 2 }\cdot {1\over (s+{1\over 4})^2+ {15 \over 16}}\right\} = {1\over 2}e^{-t/4} \cdot {4\over \sqrt{15}} \sin{\sqrt{15} t \over 4} ={2\over \sqrt{15}}e^{-t/4} \sin{\sqrt{15}t\over 4} \\ \Rightarrow L^{-1} \left\{{e^{-5s}\over 2s^2+s+2}\right\} =\bbox[red, 2pt]{x(t) = {2\over \sqrt{15}} e^{-(t-5)/4} \sin{\sqrt{15}(t-5)\over 4}u(t-5)}
解答:\textbf{(6.1)
\textbf{(6.2) }f(-x)=-f(x) \Rightarrow f(x) \text{ is odd }\Rightarrow a_n=0\\\qquad b_n= {4\over \pi}\int_0^{\pi/2} 2x^2 \sin(2nx)\,dx = {8\over \pi } \cdot \left(({1\over 4n^3}-{\pi^2 \over 8n})(-1)^n -{1\over 4n^3}\right)\\ = \left({2\over n^3\pi}-{\pi\over n} \right)(-1)^n-{2\over n^3\pi} \Rightarrow \bbox[red, 2pt]{f(x) =\sum_{n=1}^\infty \left( \left({2\over n^3\pi}-{\pi\over n} \right)(-1)^n-{2\over n^3\pi} \right) \sin(2n x)}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言