Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月13日 星期四

114年政大保險碩士班-微積分詳解

 國立政治大學114學年度碩士班招生考試

考試科目:微積分
系所別:風險管理與保險學系

解答:(a) u=x+130x2x+1dx=41(u1)2udu=41(u3/22u1/2+u1/2)du=[25u5/243u3/2+2u1/2]|41=7615(b) 3x32x2x2(x2+1)dx=(5xx2+1+2x2+12x2x2)dx=52ln(x2+1)+2tan1x2ln|x|+2x+C


解答:(a) L=(1cosx)1/lnxlnL=ln(1cosx)lnxlimx0+lnL=limx0+(ln(1cosx))(lnx)=limx0+xsinx(1cosx)=limx0+(xsinx)(1cosx)=limx0+sinx+xcosxsinx=limx0+(sinx+xcosx)(sinx)=limx0+2cosxxsinxcosx=2limx0+L=e2(b) limx1(1lnx1x1)=limx1x1lnx(x1)lnx=limx1(x1lnx)((x1)lnx)=limx111/xlnx+(x1)/x=limx1x1xlnx+x1=limx1(x1)(xlnx+x1)=limx11lnx+2=12

解答:(a) F(x)=x20cos(t2+t)dtF(x)=2xcos(x4+x2)(b) limx0F(x)x2=limx0F(x)(x2)=limx02xcos(x4+x2)2x=limx0cos(x4+x2)=1

解答:(a) f(x)=tan1xf(x)=11+x2=1x2+x4x6+f(x)=2x+4x36x5+f(x)=2+12x230x4+f[4](x)=24x120x3+f[5](x)=24360x2+{f(0)=0f(0)=1f(0)=0f(0)=2f[4](0)=0f[5](0)=24tan1x=x2x33!+24x55!=xx33+x55tan1x=n=0(1)n12n+1x2n+1(b) {sinx=xx33!+x55!sin(ax)=axa3x33!+a5x55!tan1x=xx33+x55sin(ax)sinxtan1x=(a2)x+3a33!x3+a5255!x5+sin(ax)sinxtan1xx3=a2x2+3a33!+a5255!x2+a=2(c) limx0sin(ax)sinxtan1xx3=3a33!=3233!=56

解答:{f(x,y)=3x22y2g(x,y)=2x22xy+y21{fx=λgxfy=λgyg=0{6x=λ(4x2y)4y=λ(2x+2y)2x22xy+y2=16x4y=4x2y2x+2y3x27xy+2y2=0(3xy)(x2y)=0{x=y/3x=2y{g(y/3,y)=5/9y2=1g(2y,y)=5y2=1{y=3/5x=1/5y=3/5x=1/5y=1/5x=2/5y=1/5x=2/5{f(±1/5,±3/5)=3f(±2/5,±1/5)=2{maximum: 2minimum: 3



解答:(a) ex=n=0xnn!xex=n=0xn+1n!(b) g(x)=x0tetdt=[tetet]|x0=xexex+1g(x)=n=0xn+1n!n=0xnn!+1=n=1xn(n1)!(1+n=1xnn!)+1=n=1(1(n1)!1n!)xn=n=2n1n!xn=n=0n+1(n+2)!xn+2=n=01n!(n+2)xn+2(c) g(1)=e1e1+1=n=01n!(n+2)n=01n!(n+2)=1

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解



沒有留言:

張貼留言