國立政治大學114學年度碩士班招生考試
考試科目:微積分
系所別:風險管理與保險學系
解答:(a) u=x+1⇒∫30x2√x+1dx=∫41(u−1)2√udu=∫41(u3/2−2u1/2+u−1/2)du=[25u5/2−43u3/2+2u1/2]|41=7615(b) ∫3x3−2x−2x2(x2+1)dx=∫(5xx2+1+2x2+1−2x−2x2)dx=52ln(x2+1)+2tan−1x−2ln|x|+2x+C
解答:(a) L=(1−cosx)1/lnx⇒lnL=ln(1−cosx)lnx⇒limx→0+lnL=limx→0+(ln(1−cosx))′(lnx)′=limx→0+xsinx(1−cosx)=limx→0+(xsinx)′(1−cosx)′=limx→0+sinx+xcosxsinx=limx→0+(sinx+xcosx)′(sinx)′=limx→0+2cosx−xsinxcosx=2⇒limx→0+L=e2(b) limx→1(1lnx−1x−1)=limx→1x−1−lnx(x−1)lnx=limx→1(x−1−lnx)′((x−1)lnx)′=limx→11−1/xlnx+(x−1)/x=limx→1x−1xlnx+x−1=limx→1(x−1)′(xlnx+x−1)′=limx→11lnx+2=12
解答:(a) F(x)=∫x20cos(t2+t)dt⇒F′(x)=2xcos(x4+x2)(b) limx→0F(x)x2=limx→0F′(x)(x2)′=limx→02xcos(x4+x2)2x=limx→0cos(x4+x2)=1
解答:(a) f(x)=tan−1x⇒f′(x)=11+x2=1−x2+x4−x6+⋯⇒f″(x)=−2x+4x3−6x5+⋯⇒f‴(x)=−2+12x2−30x4+⋯⇒f[4](x)=24x−120x3+⋯⇒f[5](x)=24−360x2+⋯⇒{f(0)=0f′(0)=1f″(0)=0f‴(0)=−2f[4](0)=0f[5](0)=24⇒tan−1x=x−2x33!+24x55!−⋯=x−x33+x55−⋯⇒tan−1x=∞∑n=0(−1)n12n+1x2n+1(b) {sinx=x−x33!+x55!−⋯sin(ax)=ax−a3x33!+a5x55!−⋯tan−1x=x−x33+x55−⋯⇒sin(ax)−sinx−tan−1x=(a−2)x+3−a33!x3+a5−255!x5+⋯⇒sin(ax)−sinx−tan−1xx3=a−2x2+3−a33!+a5−255!x2+⋯⇒a=2(c) limx→0sin(ax)−sinx−tan−1xx3=3−a33!=3−233!=−56

解答:(a) ex=∞∑n=0xnn!⇒xex=∞∑n=0xn+1n!(b) g(x)=∫x0tetdt=[tet−et]|x0=xex−ex+1⇒g(x)=∞∑n=0xn+1n!−∞∑n=0xnn!+1=∞∑n=1xn(n−1)!−(1+∞∑n=1xnn!)+1=∞∑n=1(1(n−1)!−1n!)xn=∞∑n=2n−1n!xn=∞∑n=0n+1(n+2)!xn+2=∞∑n=01n!(n+2)xn+2(c) g(1)=e1−e1+1=∞∑n=01n!(n+2)⇒∞∑n=01n!(n+2)=1
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言