Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月7日 星期五

114年台大碩士班-工程數學E詳解

國立臺灣大學114學年度碩士班招生考試

題號:174
科目:工程數學(E)

解答:(a) y=xmy=mxm1y=m(m1)xm2x=m(m1)(m2)xm3x3y+x2y2xy+2y=(m(m1)(m2)+m(m1)2m+2)xm=0(m2)(m1)(m+1)=0m=2,1,1yh=c1x2+c2x+c3x1Using variation of parameters, let{y1=x2y2=xy3=1/xW=|y1y2y3y1y2y3y1y2y3|=6xW1=|y2y3y2y3|=2x,W2=|y1y3y1y3|=3,W3=|y1y2y1y2|=x2R(x)=3ln(x)W=12xln(x){u1=RW1=lnxu2=RW2=32xlnxu3=RW3=12x3lnx{u1=xlnxxu2=38x234x2lnxu3=18x4lnx132x4yp=u1y1+u2y2+u3y3=x3lnxx3+38x334x3lnx+18x3lnx132x3yp=2132x3+38x3lnxy=yh+ypc1x2+c2x+c3x12132x3+38x3lnx(b) y5y+6y=0λ25λ+6=0(λ2)(λ3)=0λ=2,3yh=c1e2x+c2e3xyp=Acos(3x)+Bsin(3x)yp=3Asin(3x)+3Bcos(3x)yp=9Acos(3x)9Bsin(3x)yp5yp+6yp=(3A15B)cos(3x)+(15A3B)sin(3x)=9cos(3x){A+5B=35AB=0{A=3/26B=15/26yp=326cos(3x)1526sin(3x)y=yh+ypy=c1e2x+c2e3x326cos(3x)1526sin(3x)(c) 4y12y+9y=04λ212λ+9=0(2λ3)2=0λ=32yh=c1e1.5x+c2xe1.5xyp=Ax2e1.5xyp=2Axe1.5x+32Ax2e1.5xyp=2Ae1.5x+6Axe1.5x+94Ax2e1.5x4yp12yp+9yp=8Ae1.5x=2e1.5xA=14yp=14x2e1.5xy=yh+ypy=c1e1.5x+c2xe1.5x+14x2e1.5x
解答:(a) L{et(8cosh(2t)3sinh(4t))}=L{et(8e2t+e2t23e4te4t2)}=L{4et+4e3t32e3t+32e5t}=4s1+4s+432(s3)+32(s+5)(b) L1{2s5s26s+25}=L1{2s3(s3)2+42+144(s3)2+42}=e3t(2cos(4t)+14sin(4t))(c) L{y}2L{y}3L{y}=L{u(t1)}s2Y(s)sy(0)y(0)2(sY(s)y(0))3Y(s)=ess(s22s3)Y(s)+1=essY(s)=ess(s22s3)1s22s3y(t)=L1{Y(s)}=L1{ess(s22s3)}L1{1s22s3}=L1{es3s+es4(s+1)+es12(s3)}L1{14(s3)14s(s+1)}y(t)=u(t1)(13+14e(t1)+112e3(t1))(14e3t14et) 
(d) L{2ux2}=L{ut}2x2U(x,s)=sU(x,s)u(x,0)2x2U(x,s)sU(x,s)=25{Uh(x,s)=c1esx+c2esxUp(x,s)=25/sU(x,s)=Uh+UpU(x,s)=c1esx+c2esx+25sU(,s)=0estu(,t)dt=0est25dt=25sc1=0U(x,s)=c2esx+25su(0,t)=0U(0,s)=0c2+25s=0c2=25sU(x,s)=25sesx+25su(x,t)=L1{25sesx+25s}u(x,t)=25erfc(x2t)+25
解答:3xy+yy=0y+13xy13xy=0{P(x)=13xQ(x)=13x{xP(x)=13 is analytic at x=0x2Q(x)=x3 is analytic at x=0Set y=xrn=0cnxn=n=0cnxn+ry=n=0cn(n+r)xn+r1y=n=0cn(n+r)(n+r1)xn+r2y+13xy13xy=0n=0cn(n+r)(n+r1)xn+r2+13xn=0cn(n+r)xn+r113xn=0cnxn+r=0xr[n=03cn(n+r)(n+r1)xn1+n=0cn(n+r)xn1n=0cnxn]=0xr[c0r(3r2)+n=0(cn+1(n+r+1)(3n+3r+1)+cn)xn]=0c0r(3r2)=0r=0,23Case I r=0cn+1(n+0+1)(3n+0+1)+cn=0cn+1=cn(n+1)(3n+1)c1=c0c2=c124=c08c3=c237=c0168c4=c3410=16720c0y=c0(1x+18x21168x3+16720x4+)Case II r=23cn+1(n+53)(3n+3)+cn=0cn+1=cn(n+1)(3n+5)c1=c05c2=c116=c080c3=c233=c02640c4=c356=c0147840y=c0x2/3(115x+180x212640x3+1147840x4+)y=c0(x2/315x5/3+180x8/312640x11/3+1147840x14/3+)General solution is y=A(1x+18x21168x3+16720x4+)+B(x2/315x5/3+180x8/312640x11/3+1147840x14/3+)
解答:1,cos(mx)=ππcos(mx)dx=[1msin(mx)]|ππ=0,m=1,2,31,sin(mx)=ππsin(mx)dx=[1mcos(mx)]|ππ=0,m=1,2,3cos(mx),sin(nx)=ππcos(mx)sin(nx)dx=[cos((mn)x)2(mn)cos((m+n))x2(m+n)]|ππ=0,mncos(mx),sin(mx)=ππcos(mx)sin(mx)dx=12ππsin(2mx)dx=0,m=nYes, it forms an orthogonal set1,1=ππ1dx=2π112πcos(mx),cos(mx)=ππcos2(mx)dx=12ππ(cos(2mx)+1)dx=πcos(mx)1πcos(mx)sin(mx),sin(mx)=ππsin2(mx)dx=12ππ(1cos(2mx))dx=πsin(mx)1πsin(mx) orthonomal set ={12π,1πcos(mx),1πsin(mx)},m=1,2,3
解答:f(x)=x3f(x)=f(x)f(x) is odd an=0bn=1πππx3sin(nx)dx=(1)n(12n32π2n)f(x)=n=1(1)n(12n32π2n)sin(nx)

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言