國立臺灣大學114學年度碩士班招生考試
題號:174
科目:工程數學(E)
解答:(a) y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x‴=m(m−1)(m−2)xm−3⇒x3y‴+x2y″−2xy′+2y=(m(m−1)(m−2)+m(m−1)−2m+2)xm=0⇒(m−2)(m−1)(m+1)=0⇒m=2,1,−1⇒yh=c1x2+c2x+c3x−1Using variation of parameters, let{y1=x2y2=xy3=1/x⇒W=|y1y2y3y′1y′2y′3y″1y″2y″3|=−6x⇒W1=|y2y3y′2y′3|=−2x,W2=|y1y3y′1y′3|=−3,W3=|y1y2y′1y′2|=−x2⇒R(x)=3ln(x)W=−12xln(x)⇒{u′1=RW1=lnxu′2=−RW2=−32xlnxu′3=RW3=12x3lnx⇒{u1=xlnx−xu2=38x2−34x2lnxu3=18x4lnx−132x4⇒yp=u1y1+u2y2+u3y3=x3lnx−x3+38x3−34x3lnx+18x3lnx−132x3⇒yp=−2132x3+38x3lnx⇒y=yh+yp⇒c1x2+c2x+c3x−1−2132x3+38x3lnx(b) y″−5y′+6y=0⇒λ2−5λ+6=0⇒(λ−2)(λ−3)=0⇒λ=2,3⇒yh=c1e2x+c2e3xyp=Acos(3x)+Bsin(3x)⇒y′p=−3Asin(3x)+3Bcos(3x)⇒y″p=−9Acos(3x)−9Bsin(3x)⇒y″p−5y′p+6yp=(−3A−15B)cos(3x)+(15A−3B)sin(3x)=9cos(3x)⇒{A+5B=−35A−B=0⇒{A=−3/26B=−15/26⇒yp=−326cos(3x)−1526sin(3x)⇒y=yh+yp⇒y=c1e2x+c2e3x−326cos(3x)−1526sin(3x)(c) 4y″−12y′+9y=0⇒4λ2−12λ+9=0⇒(2λ−3)2=0⇒λ=32⇒yh=c1e1.5x+c2xe1.5xyp=Ax2e1.5x⇒y′p=2Axe1.5x+32Ax2e1.5x⇒y″p=2Ae1.5x+6Axe1.5x+94Ax2e1.5x⇒4y″p−12y′p+9yp=8Ae1.5x=2e1.5x⇒A=14⇒yp=14x2e1.5x⇒y=yh+yp⇒y=c1e1.5x+c2xe1.5x+14x2e1.5x解答:(a) L{e−t(8cosh(2t)−3sinh(4t))}=L{e−t(8⋅e2t+e−2t2−3⋅e4t−e−4t2)}=L{4et+4e−3t−32e3t+32e−5t}=4s−1+4s+4−32(s−3)+32(s+5)(b) L−1{2s−5s2−6s+25}=L−1{2⋅s−3(s−3)2+42+14⋅4(s−3)2+42}=e3t(2cos(4t)+14sin(4t))(c) L{y″}−2L{y′}−3L{y}=L{u(t−1)}⇒s2Y(s)−sy(0)−y′(0)−2(sY(s)−y(0))−3Y(s)=e−ss⇒(s2−2s−3)Y(s)+1=e−ss⇒Y(s)=e−ss(s2−2s−3)−1s2−2s−3⇒y(t)=L−1{Y(s)}=L−1{e−ss(s2−2s−3)}−L−1{1s2−2s−3}=L−1{−e−s3s+e−s4(s+1)+e−s12(s−3)}−L−1{14(s−3)−14s(s+1)}⇒y(t)=u(t−1)(−13+14e−(t−1)+112e3(t−1))−(14e3t−14e−t)
(d) L{∂2u∂x2}=L{∂u∂t}⇒∂2∂x2U(x,s)=sU(x,s)−u(x,0)⇒∂2∂x2U(x,s)−sU(x,s)=−25⇒{Uh(x,s)=c1e√sx+c2e−√sxUp(x,s)=25/s⇒U(x,s)=Uh+Up⇒U(x,s)=c1e√sx+c2e−√sx+25sU(∞,s)=∫∞0e−stu(∞,t)dt=∫∞0e−st⋅25dt=25s⇒c1=0⇒U(x,s)=c2e−√sx+25su(0,t)=0⇒U(0,s)=0⇒c2+25s=0⇒c2=−25s⇒U(x,s)=−25se−√sx+25su(x,t)=L−1{−25se−√sx+25s}⇒u(x,t)=−25erfc(x2√t)+25
解答:3xy″+y′−y=0⇒y″+13xy′−13xy=0⇒{P(x)=13xQ(x)=−13x⇒{xP(x)=13 is analytic at x=0x2Q(x)=−x3 is analytic at x=0Set y=xr∞∑n=0cnxn=∞∑n=0cnxn+r⇒y′=∞∑n=0cn(n+r)xn+r−1⇒y″=∞∑n=0cn(n+r)(n+r−1)xn+r−2⇒y″+13xy′−13xy=0⇒∞∑n=0cn(n+r)(n+r−1)xn+r−2+13x∞∑n=0cn(n+r)xn+r−1−13x∞∑n=0cnxn+r=0⇒xr[∞∑n=03cn(n+r)(n+r−1)xn−1+∞∑n=0cn(n+r)xn−1−∞∑n=0cnxn]=0⇒xr[c0r(3r−2)+∞∑n=0(cn+1(n+r+1)(3n+3r+1)+cn)xn]=0⇒c0r(3r−2)=0⇒r=0,23Case I r=0⇒cn+1(n+0+1)(3n+0+1)+cn=0⇒cn+1=−cn(n+1)(3n+1)⇒c1=−c0⇒c2=−c12⋅4=c08⇒c3=−c23⋅7=−c0168⇒c4=−c34⋅10=16720c0⇒y=c0(1−x+18x2−1168x3+16720x4+⋯)Case II r=23⇒cn+1(n+53)(3n+3)+cn=0⇒cn+1=−cn(n+1)(3n+5)⇒c1=−c05⇒c2=−c116=c080⇒c3=−c233=−c02640⇒c4=−c356=c0147840⇒y=c0x2/3(1−15x+180x2−12640x3+1147840x4+⋯)⇒y=c0(x2/3−15x5/3+180x8/3−12640x11/3+1147840x14/3+⋯)⇒General solution is y=A(1−x+18x2−1168x3+16720x4+⋯)+B(x2/3−15x5/3+180x8/3−12640x11/3+1147840x14/3+⋯)
解答:3xy″+y′−y=0⇒y″+13xy′−13xy=0⇒{P(x)=13xQ(x)=−13x⇒{xP(x)=13 is analytic at x=0x2Q(x)=−x3 is analytic at x=0Set y=xr∞∑n=0cnxn=∞∑n=0cnxn+r⇒y′=∞∑n=0cn(n+r)xn+r−1⇒y″=∞∑n=0cn(n+r)(n+r−1)xn+r−2⇒y″+13xy′−13xy=0⇒∞∑n=0cn(n+r)(n+r−1)xn+r−2+13x∞∑n=0cn(n+r)xn+r−1−13x∞∑n=0cnxn+r=0⇒xr[∞∑n=03cn(n+r)(n+r−1)xn−1+∞∑n=0cn(n+r)xn−1−∞∑n=0cnxn]=0⇒xr[c0r(3r−2)+∞∑n=0(cn+1(n+r+1)(3n+3r+1)+cn)xn]=0⇒c0r(3r−2)=0⇒r=0,23Case I r=0⇒cn+1(n+0+1)(3n+0+1)+cn=0⇒cn+1=−cn(n+1)(3n+1)⇒c1=−c0⇒c2=−c12⋅4=c08⇒c3=−c23⋅7=−c0168⇒c4=−c34⋅10=16720c0⇒y=c0(1−x+18x2−1168x3+16720x4+⋯)Case II r=23⇒cn+1(n+53)(3n+3)+cn=0⇒cn+1=−cn(n+1)(3n+5)⇒c1=−c05⇒c2=−c116=c080⇒c3=−c233=−c02640⇒c4=−c356=c0147840⇒y=c0x2/3(1−15x+180x2−12640x3+1147840x4+⋯)⇒y=c0(x2/3−15x5/3+180x8/3−12640x11/3+1147840x14/3+⋯)⇒General solution is y=A(1−x+18x2−1168x3+16720x4+⋯)+B(x2/3−15x5/3+180x8/3−12640x11/3+1147840x14/3+⋯)
解答:⟨1,cos(mx)⟩=∫π−πcos(mx)dx=[1msin(mx)]|π−π=0,m=1,2,3⟨1,sin(mx)⟩=∫π−πsin(mx)dx=[−1mcos(mx)]|π−π=0,m=1,2,3⟨cos(mx),sin(nx)⟩=∫π−πcos(mx)sin(nx)dx=[cos((m−n)x)2(m−n)−cos((m+n))x2(m+n)]|π−π=0,m≠n⟨cos(mx),sin(mx)⟩=∫π−πcos(mx)sin(mx)dx=12∫π−πsin(2mx)dx=0,m=n⇒Yes, it forms an orthogonal set⟨1,1⟩=∫π−π1dx=2π⇒1→1√2π⟨cos(mx),cos(mx)⟩=∫π−πcos2(mx)dx=12∫π−π(cos(2mx)+1)dx=π⇒cos(mx)→1√πcos(mx)⟨sin(mx),sin(mx)⟩=∫π−πsin2(mx)dx=12∫π−π(1−cos(2mx))dx=π⇒sin(mx)→1√πsin(mx)⇒ orthonomal set ={1√2π,1√πcos(mx),1√πsin(mx)},m=1,2,3
解答:f(x)=x3⇒f(−x)=−f(x)⇒f(x) is odd ⇒an=0bn=1π∫π−πx3sin(nx)dx=(−1)n(12n3−2π2n)⇒f(x)=∞∑n=1(−1)n(12n3−2π2n)sin(nx)
解答:f(x)=x3⇒f(−x)=−f(x)⇒f(x) is odd ⇒an=0bn=1π∫π−πx3sin(nx)dx=(−1)n(12n3−2π2n)⇒f(x)=∞∑n=1(−1)n(12n3−2π2n)sin(nx)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言