國立臺灣大學114學年度碩士班招生考試
題號:163
科目:工程數學(A)
解答:(a) A=[010−100001]⇒det(A)=1⇒det(A7)=17=1⇒det(5A7)=53⋅det(A7)=125(b) det(A−λI)=−(λ−1)(λ2+1)=0⇒ eigenvalues of A:1,±i⇒ eigenvalues of A7:17,(±i)7=1,∓i⇒ eigenvalues of 5A7:1×5,∓i×5⇒ eigenvalues of 5A7:5,5i,−5i(c) λ1=1⇒(A−λ1I)v=0⇒[−110−1−10000][x1x2x3]=0⇒x1=x2=0⇒v=x3(001), choose v1=(001)λ2=i⇒(A−λ2I)v=0⇒[−i10−1−i0001−i][x1x2x3]=0⇒{x1+ix2=0x3=0⇒v=x2(−i10), choose v2=(−i10)λ3=−i⇒(A−λ3I)v=0⇒[i10−1i0001+i][x1x2x3]=0⇒{x1=ix2x3=0⇒v=x2(i10), choose v3=(i10)⇒D=[λ1000λ2000λ3],P=[v1v2v2]⇒A=PDP−1=[0−ii011100][1000i000−i][001i2120−i2120](d) A=PDP−1⇒A2025=PD2025P−1=[0−ii011100][12025000i2025000(−i)2025][001i2120−i2120]=[0−ii011100][1000i000−i][001i2120−i2120]=A=[010−100001]解答:f(x)=sin(x)cos(x)=12sin(2x)
解答:ddx[xy]=y+xy′=2y−xey/x⇒xy′−y=−xey/x⇒−1xy′e−y/x+1x2ye−y/x=1x⇒(e−y/x)′=1x⇒e−y/x=lnx+c1⇒−yx=ln(lnx+c1)⇒y=−xln(c1+lnx)
解答:3xux−uy=2u−x⇒dx3x=dy−1=du2u−xdx3x=dy−1⇒13lnx=−y+a⇒a=13lnx+ydx3x=du2u−x⇒3xdudx=2u−x⇒dudx−23xu=−13⇒x−2/3dudx−23x−5/3u=−13x−2/3⇒(x−2/3u)′=−13x−2/3⇒x−2/3u=−x1/3+b⇒b=x−2/3u+x1/3=F(a)=F(13lnx+y)⇒x−2/3⋅3x+x1/3=F(13lnx)⇒F(13lnx)=4x1/3⇒F(x)=4ex⇒x−2/3u+x1/3=F(13lnx+y)=4e13lnx+y⇒u(x,y)=4x2/3e13lnx+y−x
解答:L{y″
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言