國立中山大學114學年碩士班考試入學招生考試
科目名稱:工程數學【海下所碩士班】
解答:f(x)=ex⇒f[n](x)=ex⇒f[n](0)=1⇒ex=1+x+12!x2+13!x3+14!x4+⋯⇒ex=1+x+12x2+16x3+124x4+⋯⇒eix=1+ix+12(ix)2+16(ix)3+124(ix4)+⋯⇒eix=1+ix−1x2−16ix3+124x4+⋯
解答:(AB)−1=B−1A−1=(11−11)(4321)=(64−2−2)
解答:y′+1xy=3x⇒xy′+y=3x2⇒(xy)′=3x2⇒xy=x3+c1⇒y=x2+c1x⇒y(1)=1+c1=2⇒c1=1⇒y=x2+1x

解答:L{1}=∫∞0e−stdt=[−1se−st]|∞0=1sL{eat}=∫∞0eat⋅e−stdt=∫∞0e−(s−a)tdt=[−1s−ae−(s−a)t]|∞0=1s−a⇒L{1}=1s,L{eat}=1s−a
解答:x2y″+xy′+(x2−111)y=0 is a Bessel function with v2=111⇒y=c1J1/√11(x)+c2J−1/√11(x), whereJ1/√11(x)=∞∑n=0(−1)nn!Γ(1+1√11+n)(x2)2n+1/√11, and J−1/√11(x)=∞∑n=0(−1)nn!Γ(1−1√11+n)(x2)2n−1/√11
解答:f(t)=2t2⇒f(−t)=f(t)⇒f(t) is even ⇒bn=0a0=12π∫2π02t2dt=83π2an=1π∫2π02t2cos(nt)dt=1π⋅8πn3=8n3⇒f(t)=83π2+∞∑n=18n3cos(nt)

解答:∂2p∂x2=1c2⋅∂2p∂t2⇒∂2p∂t2=c2∂2p∂x2⇒By d'Alembert's method: p(x,t)=12(f(x+ct)+f(x−ct))+12c∫x+ctx−ctg(s)ds,{f(x)=11+4x2g(x)=0⇒p(x,t)=12(11+4(x+ct)2+11+4(x−ct)2)+0
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言