國立成功大學114學年度碩士班招生考試
系所:水利及海洋工程學系
科目:工程數學
解答:(1) ∇=(∂∂x,∂∂y,∂∂z)⇒∇(fg)=∇fg+f∇(1g)=g∇fg2−f∇gg2=1g2(g∇f−f∇g)QED(2){f=f(x,y,z)v=(v1,v2,v2)⇒div(fv)=div((fv1,fv2,fv3))=∂∂x(fv1)+∂∂y(fv2)+∂∂z(fv3)=v1∂∂xf+f∂∂xv1+v2∂∂yf+f∂∂yv2+v3∂∂zf+f∂∂zv3=(v1∂∂xf+v2∂∂yf+v3∂∂zf)+f(∂∂xv1+∂∂yv2+∂∂zv3)=v⋅∇f+fdivv⇒div(fv)=fdivv+v⋅∇fQED解答:(1)det(A)=(1−p)2−16=(p−5)(p+3)=0⇒p=−3,5⇒{rank(A)=1p=−3,5rank(A)=2otherwise(2)A=[p−qqp]⇒AT=[pq−qp]⇒AAT=[p2+q200p2+q2]=I⇒p2+q2=1
解答:(1)y″
解答:\mathbf{(1) } \cases{x=\cos \theta\\ y=\sin \theta} \Rightarrow \cases{dx=-\sin \theta d\theta\\ dy=\cos \theta d\theta} \Rightarrow \oint_C \mathbf F\cdot d\mathbf r = \oint_C ydx-xdy =\int_0^{2\pi} (-\sin^2 \theta-\cos^2\theta)\,d\theta \\\quad = \int_0^{2\pi} -1\,d\theta =-2\pi \cdots(1)\\\quad \text{By Green Theorem, }\cases{P(x,y)=y\\ Q(x,y)=-x} \Rightarrow \oint_C ydx-xdy =\iint( Q_x-P_y)\,dA = \iint -2\,dA\\ \quad =(-2)\cdot 1^2\pi =-2\pi \cdots(2)\\\qquad (1)=(2)=-2\pi \qquad \bbox[red, 2pt]{\text{QED}}\\ \mathbf{(2) } \mathbf F=[0,x,0] \Rightarrow div \,\mathbf F=0 \\\quad \text{By Divergence Theorem of Gauss}, \iint_S \mathbf F\cdot \mathbf n\,d A = \iiint_T div \mathbf \,F\,dV =\bbox[red, 2pt]0
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言