國立成功大學114學年度碩士班招生考試
系所:系統及船舶機電工程學系
科目:工程數學
解答:{P(x,y)=−2xyQ(x,y)=3x2+y2⇒{Py=−2xQx=6x⇒Py≠Qx⇒Not Exact−Py−QxP=−−8x−2xy=−4y depends on y only⇒u′=−4yu⇒integration factor u=y−4⇒{uP=−2x/y3uQ=3x2/y4+1/y2⇒{(uP)y=6x/y4(uQ)x=6x/y4⇒Exact⇒Φ(x,y)=∫uPdx=∫uQdy⇒Φ(x,y)=∫−2xy3dx=∫(3x2y4+1y2)dy⇒Φ(x,y)=−x2y3+ϕ(y)=−x2y3−1y+ρ(x)⇒x2y3+1y=c1解答:A=[0−1−90]⇒det(A−λI)=0⇒λ=3,−3{λ1=3⇒v1=[−13]λ2=−3⇒v2=[13]⇒yc=c1[−13]e3t+c2[13]e−3t⇒B=[−e3te−3t3e3t3e−3t]⇒B−1=[−12e−3t16e−3t12e3t16e3t]⇒B−1g=[−12e−3t16e−3t12e3t16e3t][10]=[−12e−3t12e3t]⇒∫[−12e−3t12e3t]dt=[16e−3t16e3t]⇒yp=[−e3te−3t3e3t3e−3t][16e−3t16e3t]=[01]⇒y=yc+yp=c1[−13]e3t+c2[13]e−3t+[01]⇒{y1=−c1e3t+c2e−3ty2=3c1e3t+3c2e−3t+1⇒{y1(0)=−c1+c2=1y2(0)=3c1+3c2+1=1⇒{c1=−1/2c2=1/2⇒{y1=12e3t+12e−3ty2=−32e3t+32e−3t+1
解答:u(x,t)=X(x)T(t)⇒XT′=c2X″T⇒T′c2T=X″X=kB.C.:{u(0,t)=X(0)T(t)=0u(L,t)=X(L)T(t)=0⇒{X(0)=0X(L)=0Case I k=0⇒X=c1x+c2⇒B.C.:{X(0)=c2=0X(L)=c1L+c2=0⇒c1=c2=0⇒X=0Case II k=ρ2>0⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒B.C.:{X(0)=c1+c2=0X(L)=c1eρL+c2e−ρL=0⇒c1eρL−c1e−ρL=0⇒c1(e2ρL−1)=0⇒c1=0⇒c2=0⇒X=0Case III k=−ρ2<0⇒X″+ρ2X=0⇒X=c1cosρx+c2sinρx⇒B.C.:{X(0)=c1=0X(L)=c1cosρL+c2sinρL=0⇒sinρL=0⇒ρL=nπ⇒ρ=nπL⇒X=c2sinnπxLT′c2T=k=−ρ2⇒T′+ρ2c2T=0⇒T=c3e−ρ2c2t=c3e−n2π2c2t/L2⇒un(x,t)=c2c3sinnπxLe−n2π2c2t/L2⇒u(x,t)=∞∑n=1ansinnπxLe−n2π2c2t/L2⇒I.C.:u(x,0)=∞∑n=1ansinnπxL=5sin3πxL⇒{a3=5an=0,n≠3⇒u(x,t)=5sin3πxLe−9c2π2t/L2
解答:
volume of the triangular pyramid: 12⋅2⋅2⋅4⋅13=83By Divergence Theorem of Gauss,∬SF⋅ndA=∭R∇⋅FdV=∭R(∂∂x2x+∂∂y(−y))dV=∭R1dV=83
解答:Suppose the Fourier transform of f(t)=F(f(t))=ˆf(ω)f(t)=e−3t2⇒f′(t)=−6te−3t2=−6tf(t)⇒F(f′(t))=−6F(tf(t))⇒iωˆf(ω)=−6iddωˆf(ω)⇒ˆf(ω)=c1e−ω2/12⇒c1=ˆf(0)=∫∞−∞e−3t2dt⇒c21=∫∞−∞∫∞−∞e−3(x2+y2)dxdy=∫2π0∫∞0re−3r2drdθ=∫2π016dθ=π3⇒c1=√π3⇒ˆf(ω)=√3π3e−ω2/12
解答:Suppose the Fourier transform of f(t)=F(f(t))=ˆf(ω)f(t)=e−3t2⇒f′(t)=−6te−3t2=−6tf(t)⇒F(f′(t))=−6F(tf(t))⇒iωˆf(ω)=−6iddωˆf(ω)⇒ˆf(ω)=c1e−ω2/12⇒c1=ˆf(0)=∫∞−∞e−3t2dt⇒c21=∫∞−∞∫∞−∞e−3(x2+y2)dxdy=∫2π0∫∞0re−3r2drdθ=∫2π016dθ=π3⇒c1=√π3⇒ˆf(ω)=√3π3e−ω2/12
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言