Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2025年3月15日 星期六

114年成大船舶機電碩士班-工程數學詳解

 國立成功大學114學年度碩士班招生考試

系所:系統及船舶機電工程學系
科目:工程數學

解答:{P(x,y)=2xyQ(x,y)=3x2+y2{Py=2xQx=6xPyQxNot ExactPyQxP=8x2xy=4y depends on y onlyu=4yuintegration factor u=y4{uP=2x/y3uQ=3x2/y4+1/y2{(uP)y=6x/y4(uQ)x=6x/y4ExactΦ(x,y)=uPdx=uQdyΦ(x,y)=2xy3dx=(3x2y4+1y2)dyΦ(x,y)=x2y3+ϕ(y)=x2y31y+ρ(x)x2y3+1y=c1
解答:A=[0190]det(AλI)=0λ=3,3{λ1=3v1=[13]λ2=3v2=[13]yc=c1[13]e3t+c2[13]e3tB=[e3te3t3e3t3e3t]B1=[12e3t16e3t12e3t16e3t]B1g=[12e3t16e3t12e3t16e3t][10]=[12e3t12e3t][12e3t12e3t]dt=[16e3t16e3t]yp=[e3te3t3e3t3e3t][16e3t16e3t]=[01]y=yc+yp=c1[13]e3t+c2[13]e3t+[01]{y1=c1e3t+c2e3ty2=3c1e3t+3c2e3t+1{y1(0)=c1+c2=1y2(0)=3c1+3c2+1=1{c1=1/2c2=1/2{y1=12e3t+12e3ty2=32e3t+32e3t+1
解答:u(x,t)=X(x)T(t)XT=c2X
解答:

\text{volume of the triangular pyramid: }{1\over 2}\cdot 2\cdot 2\cdot 4\cdot {1\over 3}={8\over 3} \\ \text{By Divergence Theorem of Gauss,} \iint_S \mathbf F\cdot \mathbf n\, dA = \iiint_R \nabla\cdot \mathbf F\, dV =\iiint_R ({\partial \over \partial x}2x+ {\partial \over \partial y}(-y))\,dV \\=\iiint_R1\,dV= \bbox[red, 2pt]{8\over 3}
解答:\text{Suppose the Fourier transform of }f(t) =\mathcal F(f(t))=\hat f(\omega)\\f(t)=e^{-3t^2} \Rightarrow f'(t)=-6te^{-3t^2} =-6t f(t) \Rightarrow \mathcal F(f'(t)) =-6 \mathcal F(tf(t)) \\ \Rightarrow i\omega \hat f(\omega) =-6i {d\over d\omega} \hat f(\omega) \Rightarrow \hat f(\omega) =c_1e^{-\omega^2/12} \Rightarrow c_1= \hat f(0) =\int_{-\infty}^\infty e^{-3t^2}\,dt \\ \Rightarrow c_1^2 =\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-3(x^2+y^2)}\,dx dy = \int_0^{2\pi} \int_0^\infty re^{-3r^2}\,drd\theta  = \int_0^{2\pi} {1\over 6}\,d\theta={\pi\over 3} \Rightarrow c_1= \sqrt{\pi\over 3} \\ \Rightarrow \hat f(\omega) = \bbox[red, 2pt]{{\sqrt{3\pi} \over 3} e^{-\omega^2/12}}

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言