國立成功大學114學年度碩士班招生考試
系所:系統及船舶機電工程學系
科目:工程數學
解答:{P(x,y)=−2xyQ(x,y)=3x2+y2⇒{Py=−2xQx=6x⇒Py≠Qx⇒Not Exact−Py−QxP=−−8x−2xy=−4y depends on y only⇒u′=−4yu⇒integration factor u=y−4⇒{uP=−2x/y3uQ=3x2/y4+1/y2⇒{(uP)y=6x/y4(uQ)x=6x/y4⇒Exact⇒Φ(x,y)=∫uPdx=∫uQdy⇒Φ(x,y)=∫−2xy3dx=∫(3x2y4+1y2)dy⇒Φ(x,y)=−x2y3+ϕ(y)=−x2y3−1y+ρ(x)⇒x2y3+1y=c1解答:A=[0−1−90]⇒det(A−λI)=0⇒λ=3,−3{λ1=3⇒v1=[−13]λ2=−3⇒v2=[13]⇒yc=c1[−13]e3t+c2[13]e−3t⇒B=[−e3te−3t3e3t3e−3t]⇒B−1=[−12e−3t16e−3t12e3t16e3t]⇒B−1g=[−12e−3t16e−3t12e3t16e3t][10]=[−12e−3t12e3t]⇒∫[−12e−3t12e3t]dt=[16e−3t16e3t]⇒yp=[−e3te−3t3e3t3e−3t][16e−3t16e3t]=[01]⇒y=yc+yp=c1[−13]e3t+c2[13]e−3t+[01]⇒{y1=−c1e3t+c2e−3ty2=3c1e3t+3c2e−3t+1⇒{y1(0)=−c1+c2=1y2(0)=3c1+3c2+1=1⇒{c1=−1/2c2=1/2⇒{y1=12e3t+12e−3ty2=−32e3t+32e−3t+1
解答:u(x,t)=X(x)T(t)⇒XT′=c2X″
解答:
\text{volume of the triangular pyramid: }{1\over 2}\cdot 2\cdot 2\cdot 4\cdot {1\over 3}={8\over 3} \\ \text{By Divergence Theorem of Gauss,} \iint_S \mathbf F\cdot \mathbf n\, dA = \iiint_R \nabla\cdot \mathbf F\, dV =\iiint_R ({\partial \over \partial x}2x+ {\partial \over \partial y}(-y))\,dV \\=\iiint_R1\,dV= \bbox[red, 2pt]{8\over 3}
解答:\text{Suppose the Fourier transform of }f(t) =\mathcal F(f(t))=\hat f(\omega)\\f(t)=e^{-3t^2} \Rightarrow f'(t)=-6te^{-3t^2} =-6t f(t) \Rightarrow \mathcal F(f'(t)) =-6 \mathcal F(tf(t)) \\ \Rightarrow i\omega \hat f(\omega) =-6i {d\over d\omega} \hat f(\omega) \Rightarrow \hat f(\omega) =c_1e^{-\omega^2/12} \Rightarrow c_1= \hat f(0) =\int_{-\infty}^\infty e^{-3t^2}\,dt \\ \Rightarrow c_1^2 =\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-3(x^2+y^2)}\,dx dy = \int_0^{2\pi} \int_0^\infty re^{-3r^2}\,drd\theta = \int_0^{2\pi} {1\over 6}\,d\theta={\pi\over 3} \Rightarrow c_1= \sqrt{\pi\over 3} \\ \Rightarrow \hat f(\omega) = \bbox[red, 2pt]{{\sqrt{3\pi} \over 3} e^{-\omega^2/12}}
解答:\text{Suppose the Fourier transform of }f(t) =\mathcal F(f(t))=\hat f(\omega)\\f(t)=e^{-3t^2} \Rightarrow f'(t)=-6te^{-3t^2} =-6t f(t) \Rightarrow \mathcal F(f'(t)) =-6 \mathcal F(tf(t)) \\ \Rightarrow i\omega \hat f(\omega) =-6i {d\over d\omega} \hat f(\omega) \Rightarrow \hat f(\omega) =c_1e^{-\omega^2/12} \Rightarrow c_1= \hat f(0) =\int_{-\infty}^\infty e^{-3t^2}\,dt \\ \Rightarrow c_1^2 =\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-3(x^2+y^2)}\,dx dy = \int_0^{2\pi} \int_0^\infty re^{-3r^2}\,drd\theta = \int_0^{2\pi} {1\over 6}\,d\theta={\pi\over 3} \Rightarrow c_1= \sqrt{\pi\over 3} \\ \Rightarrow \hat f(\omega) = \bbox[red, 2pt]{{\sqrt{3\pi} \over 3} e^{-\omega^2/12}}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言