Processing math: 100%

2025年3月15日 星期六

114年成大船舶機電碩士班-工程數學詳解

 國立成功大學114學年度碩士班招生考試

系所:系統及船舶機電工程學系
科目:工程數學

解答:{P(x,y)=2xyQ(x,y)=3x2+y2{Py=2xQx=6xPyQxNot ExactPyQxP=8x2xy=4y depends on y onlyu=4yuintegration factor u=y4{uP=2x/y3uQ=3x2/y4+1/y2{(uP)y=6x/y4(uQ)x=6x/y4ExactΦ(x,y)=uPdx=uQdyΦ(x,y)=2xy3dx=(3x2y4+1y2)dyΦ(x,y)=x2y3+ϕ(y)=x2y31y+ρ(x)x2y3+1y=c1
解答:A=[0190]det(AλI)=0λ=3,3{λ1=3v1=[13]λ2=3v2=[13]yc=c1[13]e3t+c2[13]e3tB=[e3te3t3e3t3e3t]B1=[12e3t16e3t12e3t16e3t]B1g=[12e3t16e3t12e3t16e3t][10]=[12e3t12e3t][12e3t12e3t]dt=[16e3t16e3t]yp=[e3te3t3e3t3e3t][16e3t16e3t]=[01]y=yc+yp=c1[13]e3t+c2[13]e3t+[01]{y1=c1e3t+c2e3ty2=3c1e3t+3c2e3t+1{y1(0)=c1+c2=1y2(0)=3c1+3c2+1=1{c1=1/2c2=1/2{y1=12e3t+12e3ty2=32e3t+32e3t+1
解答:u(x,t)=X(x)T(t)XT=c2XTTc2T=XX=kB.C.:{u(0,t)=X(0)T(t)=0u(L,t)=X(L)T(t)=0{X(0)=0X(L)=0Case I k=0X=c1x+c2B.C.:{X(0)=c2=0X(L)=c1L+c2=0c1=c2=0X=0Case II k=ρ2>0Xρ2X=0X=c1eρx+c2eρxB.C.:{X(0)=c1+c2=0X(L)=c1eρL+c2eρL=0c1eρLc1eρL=0c1(e2ρL1)=0c1=0c2=0X=0Case III k=ρ2<0X+ρ2X=0X=c1cosρx+c2sinρxB.C.:{X(0)=c1=0X(L)=c1cosρL+c2sinρL=0sinρL=0ρL=nπρ=nπLX=c2sinnπxLTc2T=k=ρ2T+ρ2c2T=0T=c3eρ2c2t=c3en2π2c2t/L2un(x,t)=c2c3sinnπxLen2π2c2t/L2u(x,t)=n=1ansinnπxLen2π2c2t/L2I.C.:u(x,0)=n=1ansinnπxL=5sin3πxL{a3=5an=0,n3u(x,t)=5sin3πxLe9c2π2t/L2
解答:

volume of the triangular pyramid: 1222413=83By Divergence Theorem of Gauss,SFndA=RFdV=R(x2x+y(y))dV=R1dV=83
解答:Suppose the Fourier transform of f(t)=F(f(t))=ˆf(ω)f(t)=e3t2f(t)=6te3t2=6tf(t)F(f(t))=6F(tf(t))iωˆf(ω)=6iddωˆf(ω)ˆf(ω)=c1eω2/12c1=ˆf(0)=e3t2dtc21=e3(x2+y2)dxdy=2π00re3r2drdθ=2π016dθ=π3c1=π3ˆf(ω)=3π3eω2/12

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言