Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月13日 星期四

114年政治大學應數碩士班-微積分詳解

國立政治大學114學年度碩士班招生考試

考試科目:微積分
系所別:應用數學系

解答:
Change the order of the integrationI=402xxy5+1dydx=20y20xy5+1dxdy=20y42(y5+1)dyu=y5+1du=5y4dyI=331110udu=[110lnu]|331=110ln33
解答:{x=rcosθy=rsinθDy+x2+y2dA=ππ/230(rsinθ+r)rdrdθ=ππ/2(9sinθ+9)dθ=[9cosθ+9θ]|ππ/2=9+92π
解答:{u=tan1xdv=11+x2dx{du=11+x2dxv=tan1xI1=tan1x1+x2dx=(tan1x)2I1I1=12(tan1x)2+C1{u=tan1xdv=(11x2+1)dx{du=11+x2dxv=xtan1xI=tan1x1+1x2dx=(11x2+1)tan1dx=tan1x(xtan1x)xtan1x1+x2dx=xtan1x(tan1x)2x1+x2dx+I1=xtan1(tan1x)212ln(1+x2)+12(tan1)2+C1=xtan1x12(tan1x)212ln(1+x2)+C1
解答:(a) {x=rcosθy=rsinθlim(x,y)(0,0)f(x,y)=limr02r3cos2θsinθ+r3sin3θr2=limr0r(2cos2θsinθ+sin3θ)=0(b) x(2x2y+y3x2+y2)=4xyx2+y22x(2x2y+y3)(x2+y2)2=2xy3(x2+y2)2fx(x,y)={2xy3(x2+y2)2,if (x,y)(0,0)0,if (x,y)=(0.0)y(2x2y+y3x2+y2)=2x2+3y2x2+y22y(2x2y+y3)(x2+y2)2=2x4+x2y2+y4(x2+y2)2fy(x,y)={2x4+x2y2+y4(x2+y2)2,if (x,y)(0,0)0,if (x,y)=(0.0)(c) {x=rcosθy=rsinθlim(x,y)(0,0)2xy3(x2+y2)2=limr02r4cosθsin3θr4=2cosθsin3θ is dependent on θfx(x,y) is not continuous at (0,0)f(x,y) is  not differentiable at(0,0)
解答:S=n=1(n!+1)2[(n+1)!]2=n=1(n!)2[(n+1)!]2+n=12(n!)[(n+1)!]2+n=11[(n+1)!]2S1=n=1(n!)2[(n+1)!]2=n=1(n!)2(n+1)2(n!)2=n=11(n+1)2<n=11n2=π6S1 convergesS2=n=12(n!)[(n+1)!]2=n=12(n+1)(n+1)!<n=12(n+2)!limn(2(n+3)!(n+2)!2)=0n=12(n+2)! convergesS2 convergesS3=n=11[(n+1)!]2limn(1[(n+2)!]2[(n+1)!]21)=0S3 convergesS=S1+S2+S3S is convergent.QED
解答:{f(x,y)=x2y+5g(x,y)=x2+y29{fx=λgxfy=λgyg=0{2xy=λ(2x)x2=λ(2y)x2+y2=92xyx2=λ(2x)λ(2y)2yx=xyx2=2y2x2+y2=2y2+y2=3y2=9y=3(30)x=6absolute maximum =f(6,3)=63+5(x,y)Rf(x,y)=x2+y+55absolute minimum =5
解答:ex=1+x+x22+x36+x424+ex2=1+x2+x42+x66+x824+xex2=x+x3+x52+x76+x924+14+x2=1411+x24=14(1x24+x416x664+x8256)=14x216+x464x61024+x84096xex214+x2=14+x+x216+x3x464+x52+
解答:(a) {P(x,y)=yexQ(x,y)=ex+3y2Py=ex=QxYes, it is conservativeΦ(x,y)=Pdx=QdyΦ=yexdx=(ex+3y2)dyΦ(x,y)=yex+ϕ(y)=yex+y3+ρ(x)potential function Φ(x,y)=yex+y3+C(b) CFdr=Φ(x(t=3),y(t=3))Φ(x(t=0),y(t=0))=Φ(e61,e241)Φ(0,0)=(e241)ee61+(e241)3
解答:x2+y2+z2=5x2=5y2z2=4y2+4z2y2+z2=1x2=4S1S2={(x,y,z)x2=4,y2+z2=1}{(x2+y2+z25)=(2x,2y,2z)(x24y24z2)=(2x,8y,8z)(2x,2y,2z)(2x,8y,8z)=4x216y216z2=0,(x,y,z)S1S2QED
解答:(a) Mn=sup{an,an+1,an+2,}Mn is decreasing and bounded from belowBy Monotone Convergence Theorem, its limit existslimnMn existsSimilarly, mn is increasing and bounded from above. By Monotone Convergence Theorem, its limit existslimnmn existsQED(b) Suppose limnMn=limnmn=L, and let ϵ>0Since limNMN=LMN<L+ϵ, for some NNan<L+ϵ for nNSince limKmK=LLϵ<mK, for some KNLϵ<an for nKP=max{N,K}Lϵ<an<L+ϵ for nPlimnan=L{an}n=1 convergesQED

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

2 則留言:

  1. 訂正一下
    1.第二題,答案應是(9*pi/2)+9
    2.第七題,x^2那項應是:x^2/16

    回覆刪除