國立政治大學114學年度碩士班招生考試
考試科目:微積分
系所別:應用數學系
解答:Change the order of the integrationI=∫40∫2√xxy5+1dydx=∫20∫y20xy5+1dxdy=∫20y42(y5+1)dyu=y5+1⇒du=5y4dy⇒I=∫331110udu=[110lnu]|331=110ln33
解答:{x=rcosθy=rsinθ⇒∬Dy+√x2+y2dA=∫ππ/2∫30(rsinθ+r)rdrdθ=∫ππ/2(9sinθ+9)dθ=[−9cosθ+9θ]|ππ/2=9+92π
解答:{u=tan−1xdv=11+x2dx⇒{du=11+x2dxv=tan−1x⇒I1=∫tan−1x1+x2dx=(tan−1x)2−I1⇒I1=12(tan−1x)2+C1{u=tan−1xdv=(1−1x2+1)dx⇒{du=11+x2dxv=x−tan−1x⇒I=∫tan−1x1+1x2dx=∫(1−1x2+1)tan−1dx=tan−1x(x−tan−1x)−∫x−tan−1x1+x2dx=xtan−1x−(tan−1x)2−∫x1+x2dx+I1=xtan−1−(tan−1x)2−12ln(1+x2)+12(tan−1)2+C1=xtan−1x−12(tan−1x)2−12ln(1+x2)+C1
解答:(a) {x=rcosθy=rsinθ⇒lim(x,y)→(0,0)f(x,y)=limr→02r3cos2θsinθ+r3sin3θr2=limr→0r(2cos2θsinθ+sin3θ)=0(b) ∂∂x(2x2y+y3x2+y2)=4xyx2+y2−2x(2x2y+y3)(x2+y2)2=2xy3(x2+y2)2⇒∂f∂x(x,y)={2xy3(x2+y2)2,if (x,y)≠(0,0)0,if (x,y)=(0.0)∂∂y(2x2y+y3x2+y2)=2x2+3y2x2+y2−2y(2x2y+y3)(x2+y2)2=2x4+x2y2+y4(x2+y2)2⇒∂f∂y(x,y)={2x4+x2y2+y4(x2+y2)2,if (x,y)≠(0,0)0,if (x,y)=(0.0)(c) {x=rcosθy=rsinθ⇒lim(x,y)→(0,0)2xy3(x2+y2)2=limr→02r4cosθsin3θr4=2cosθsin3θ is dependent on θ⇒∂f∂x(x,y) is not continuous at (0,0)⇒f(x,y) is not differentiable at(0,0)
解答:S=∞∑n=1(n!+1)2[(n+1)!]2=∞∑n=1(n!)2[(n+1)!]2+∞∑n=12(n!)[(n+1)!]2+∞∑n=11[(n+1)!]2S1=∞∑n=1(n!)2[(n+1)!]2=∞∑n=1(n!)2(n+1)2(n!)2=∞∑n=11(n+1)2<∞∑n=11n2=π6⇒S1 convergesS2=∞∑n=12(n!)[(n+1)!]2=∞∑n=12(n+1)(n+1)!<∞∑n=12(n+2)!⇒limn→∞(2(n+3)!⋅(n+2)!2)=0⇒∞∑n=12(n+2)! converges⇒S2 convergesS3=∞∑n=11[(n+1)!]2⇒limn→∞(1[(n+2)!]2⋅[(n+1)!]21)=0⇒S3 converges⇒S=S1+S2+S3⇒S is convergent.QED
解答:{f(x,y)=x2y+5g(x,y)=x2+y2−9⇒{fx=λgxfy=λgyg=0⇒{2xy=λ(2x)x2=λ(2y)x2+y2=9⇒2xyx2=λ(2x)λ(2y)⇒2yx=xy⇒x2=2y2⇒x2+y2=2y2+y2=3y2=9⇒y=√3(−√3≱0)⇒x=−√6⇒absolute maximum =f(−√6,√3)=6√3+5(x,y)∈R⇒f(x,y)=x2+y+5≥5⇒absolute minimum =5
解答:ex=1+x+x22+x36+x424+⋯⇒ex2=1+x2+x42+x66+x824+⋯⇒xex2=x+x3+x52+x76+x924+⋯14+x2=14⋅11+x24=14(1−x24+x416−x664+x8256−⋯)=14−x216+x464−x61024+x84096−⋯⇒xex2−14+x2=−14+x+x216+x3−x464+x52+⋯
解答:(a) {P(x,y)=yexQ(x,y)=ex+3y2⇒Py=ex=Qx⇒Yes, it is conservativeΦ(x,y)=∫Pdx=∫Qdy⇒Φ=∫yexdx=∫(ex+3y2)dy⇒Φ(x,y)=yex+ϕ(y)=yex+y3+ρ(x)⇒potential function Φ(x,y)=yex+y3+C(b) ∫C→F⋅d→r=Φ(x(t=3),y(t=3))−Φ(x(t=0),y(t=0))=Φ(e6−1,e24−1)−Φ(0,0)=(e24−1)ee6−1+(e24−1)3
解答:x2+y2+z2=5⇒x2=5−y2−z2=4y2+4z2⇒y2+z2=1⇒x2=4⇒S1∩S2={(x,y,z)∣x2=4,y2+z2=1}{∇(x2+y2+z2−5)=(2x,2y,2z)∇(x2−4y2−4z2)=(2x,−8y,−8z)⇒(2x,2y,2z)⋅(2x,−8y,−8z)=4x2−16y2−16z2=0,∀(x,y,z)∈S1∩S2QED
解答:(a) Mn=sup{an,an+1,an+2,…}⇒Mn is decreasing and bounded from below⇒By Monotone Convergence Theorem, its limit exists⇒limn→∞Mn existsSimilarly, mn is increasing and bounded from above. ⇒By Monotone Convergence Theorem, its limit exists⇒limn→∞mn existsQED(b) Suppose limn→∞Mn=limn→∞mn=L, and let ϵ>0Since limN→∞MN=L⇒MN<L+ϵ, for some N∈N⇒an<L+ϵ for n≥NSince limK→∞mK=L⇒L−ϵ<mK, for some K∈N⇒L−ϵ<an for n≥KP=max{N,K}⇒L−ϵ<an<L+ϵ for n≥P⇒limn→∞an=L⇒{an}∞n=1 convergesQED
解答:{u=tan−1xdv=11+x2dx⇒{du=11+x2dxv=tan−1x⇒I1=∫tan−1x1+x2dx=(tan−1x)2−I1⇒I1=12(tan−1x)2+C1{u=tan−1xdv=(1−1x2+1)dx⇒{du=11+x2dxv=x−tan−1x⇒I=∫tan−1x1+1x2dx=∫(1−1x2+1)tan−1dx=tan−1x(x−tan−1x)−∫x−tan−1x1+x2dx=xtan−1x−(tan−1x)2−∫x1+x2dx+I1=xtan−1−(tan−1x)2−12ln(1+x2)+12(tan−1)2+C1=xtan−1x−12(tan−1x)2−12ln(1+x2)+C1
解答:(a) {x=rcosθy=rsinθ⇒lim(x,y)→(0,0)f(x,y)=limr→02r3cos2θsinθ+r3sin3θr2=limr→0r(2cos2θsinθ+sin3θ)=0(b) ∂∂x(2x2y+y3x2+y2)=4xyx2+y2−2x(2x2y+y3)(x2+y2)2=2xy3(x2+y2)2⇒∂f∂x(x,y)={2xy3(x2+y2)2,if (x,y)≠(0,0)0,if (x,y)=(0.0)∂∂y(2x2y+y3x2+y2)=2x2+3y2x2+y2−2y(2x2y+y3)(x2+y2)2=2x4+x2y2+y4(x2+y2)2⇒∂f∂y(x,y)={2x4+x2y2+y4(x2+y2)2,if (x,y)≠(0,0)0,if (x,y)=(0.0)(c) {x=rcosθy=rsinθ⇒lim(x,y)→(0,0)2xy3(x2+y2)2=limr→02r4cosθsin3θr4=2cosθsin3θ is dependent on θ⇒∂f∂x(x,y) is not continuous at (0,0)⇒f(x,y) is not differentiable at(0,0)
解答:S=∞∑n=1(n!+1)2[(n+1)!]2=∞∑n=1(n!)2[(n+1)!]2+∞∑n=12(n!)[(n+1)!]2+∞∑n=11[(n+1)!]2S1=∞∑n=1(n!)2[(n+1)!]2=∞∑n=1(n!)2(n+1)2(n!)2=∞∑n=11(n+1)2<∞∑n=11n2=π6⇒S1 convergesS2=∞∑n=12(n!)[(n+1)!]2=∞∑n=12(n+1)(n+1)!<∞∑n=12(n+2)!⇒limn→∞(2(n+3)!⋅(n+2)!2)=0⇒∞∑n=12(n+2)! converges⇒S2 convergesS3=∞∑n=11[(n+1)!]2⇒limn→∞(1[(n+2)!]2⋅[(n+1)!]21)=0⇒S3 converges⇒S=S1+S2+S3⇒S is convergent.QED
解答:{f(x,y)=x2y+5g(x,y)=x2+y2−9⇒{fx=λgxfy=λgyg=0⇒{2xy=λ(2x)x2=λ(2y)x2+y2=9⇒2xyx2=λ(2x)λ(2y)⇒2yx=xy⇒x2=2y2⇒x2+y2=2y2+y2=3y2=9⇒y=√3(−√3≱0)⇒x=−√6⇒absolute maximum =f(−√6,√3)=6√3+5(x,y)∈R⇒f(x,y)=x2+y+5≥5⇒absolute minimum =5
解答:ex=1+x+x22+x36+x424+⋯⇒ex2=1+x2+x42+x66+x824+⋯⇒xex2=x+x3+x52+x76+x924+⋯14+x2=14⋅11+x24=14(1−x24+x416−x664+x8256−⋯)=14−x216+x464−x61024+x84096−⋯⇒xex2−14+x2=−14+x+x216+x3−x464+x52+⋯
解答:(a) {P(x,y)=yexQ(x,y)=ex+3y2⇒Py=ex=Qx⇒Yes, it is conservativeΦ(x,y)=∫Pdx=∫Qdy⇒Φ=∫yexdx=∫(ex+3y2)dy⇒Φ(x,y)=yex+ϕ(y)=yex+y3+ρ(x)⇒potential function Φ(x,y)=yex+y3+C(b) ∫C→F⋅d→r=Φ(x(t=3),y(t=3))−Φ(x(t=0),y(t=0))=Φ(e6−1,e24−1)−Φ(0,0)=(e24−1)ee6−1+(e24−1)3
解答:x2+y2+z2=5⇒x2=5−y2−z2=4y2+4z2⇒y2+z2=1⇒x2=4⇒S1∩S2={(x,y,z)∣x2=4,y2+z2=1}{∇(x2+y2+z2−5)=(2x,2y,2z)∇(x2−4y2−4z2)=(2x,−8y,−8z)⇒(2x,2y,2z)⋅(2x,−8y,−8z)=4x2−16y2−16z2=0,∀(x,y,z)∈S1∩S2QED
解答:(a) Mn=sup{an,an+1,an+2,…}⇒Mn is decreasing and bounded from below⇒By Monotone Convergence Theorem, its limit exists⇒limn→∞Mn existsSimilarly, mn is increasing and bounded from above. ⇒By Monotone Convergence Theorem, its limit exists⇒limn→∞mn existsQED(b) Suppose limn→∞Mn=limn→∞mn=L, and let ϵ>0Since limN→∞MN=L⇒MN<L+ϵ, for some N∈N⇒an<L+ϵ for n≥NSince limK→∞mK=L⇒L−ϵ<mK, for some K∈N⇒L−ϵ<an for n≥KP=max{N,K}⇒L−ϵ<an<L+ϵ for n≥P⇒limn→∞an=L⇒{an}∞n=1 convergesQED
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
訂正一下
回覆刪除1.第二題,答案應是(9*pi/2)+9
2.第七題,x^2那項應是:x^2/16
已更正,謝謝
刪除