Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2025年3月13日 星期四

114年政治大學應數碩士班-微積分詳解

國立政治大學114學年度碩士班招生考試

考試科目:微積分
系所別:應用數學系

解答:
Change the order of the integrationI=402xxy5+1dydx=20y20xy5+1dxdy=20y42(y5+1)dyu=y5+1du=5y4dyI=331110udu=[110lnu]|331=110ln33
解答:{x=rcosθy=rsinθDy+x2+y2dA=ππ/230(rsinθ+r)rdrdθ=ππ/2(9sinθ+9)dθ=[9cosθ+9θ]|ππ/2=9+92π
解答:{u=tan1xdv=11+x2dx{du=11+x2dxv=tan1xI1=tan1x1+x2dx=(tan1x)2I1I1=12(tan1x)2+C1{u=tan1xdv=(11x2+1)dx{du=11+x2dxv=xtan1xI=tan1x1+1x2dx=(11x2+1)tan1dx=tan1x(xtan1x)xtan1x1+x2dx=xtan1x(tan1x)2x1+x2dx+I1=xtan1(tan1x)212ln(1+x2)+12(tan1)2+C1=xtan1x12(tan1x)212ln(1+x2)+C1
解答:(a) {x=rcosθy=rsinθlim
解答:S= \sum_{n=1}^\infty{(n!+1)^2 \over [(n+1)!]^2} =\sum_{n=1}^\infty{(n!)^2 \over [(n+1)!]^2} + \sum_{n=1}^\infty{2(n!) \over [(n+1)!]^2} + \sum_{n=1}^\infty{1 \over [(n+1)!]^2} \\ S_1= \sum_{n =1}^\infty{(n!)^2 \over [(n+1)!]^2}=\sum_{n=1}^\infty{(n!)^2 \over (n+1)^2(n!)^2} = \sum_{n=1}^\infty{1\over (n+1)^2} \lt \sum_{n=1}^\infty{1\over n^2} ={\pi\over 6} \Rightarrow S_1\text{ converges} \\ S_2= \sum_{n =1}^\infty{2(n!) \over [(n+1)!]^2} = \sum_{n=1}^\infty{2 \over (n+1)(n+1)! } \lt \sum_{n=1}^\infty{2 \over  (n+2)! } \Rightarrow \lim_{n\to \infty} \left({ 2\over (n+3)!}\cdot {(n+2)! \over 2} \right) =0\\\qquad \Rightarrow \sum_{n =1}^\infty{2 \over  (n+2)! } \text{ converges} \Rightarrow S_2 \text{ converges} \\ S_3= \sum_{n=1}^\infty{1 \over [(n+1)!]^2}  \Rightarrow \lim_{n\to \infty}\left({1\over [(n+2)!]^2} \cdot {[(n+1)!]^2 \over 1} \right) =0 \Rightarrow S_3 \text{ converges}\\ \Rightarrow S=S_1+S_2 +S_3 \Rightarrow S \text{ is convergent}. \quad \bbox[red, 2pt]{QED}
解答:\cases{f(x,y)=x^2y+5\\ g(x,y)=x^2+y^2-9} \Rightarrow \cases{f_x= \lambda g_x\\ f_y=\lambda g_y\\ g=0} \Rightarrow \cases{2xy=\lambda(2x) \\ x^2= \lambda(2y) \\ x^2+y^2=9} \Rightarrow {2xy\over x^2} ={\lambda(2x) \over \lambda(2y)} \Rightarrow {2y\over x}={x\over y} \\ \Rightarrow x^2=2y^2 \Rightarrow x^2+y^2=2y^2+y^2=3y^2=9 \Rightarrow y=\sqrt 3 (-\sqrt 3\not \ge 0) \Rightarrow x=-\sqrt 6 \\ \Rightarrow \text{absolute maximum =}f(-\sqrt 6, \sqrt 3) = \bbox[red, 2pt]{6\sqrt 3+5}\\ (x,y) \in  R \Rightarrow f(x,y) = x^2+y+5 \ge 5 \Rightarrow \text{absolute minimum =}\bbox[red, 2pt]5
解答:e^x=1+x+{x^2\over 2}+{x^3\over 6}+{x^4\over 24}+ \cdots \Rightarrow e^{x^2} =1+x^2 +{x^4\over 2}+{x^6\over 6}+{x^8\over 24}+ \cdots \\ \Rightarrow xe^{x^2}  =x+x^3 +{x^5 \over 2}+{x^7\over 6}+{x^9\over 24}+ \cdots \\ {1\over 4+x^2} ={1\over 4}\cdot {1\over 1+{x^2 \over4}}={1\over 4}(1-{x^2\over 4} +{x^4\over 16} -{x^6\over 64} +{x^8\over 256}-\cdots)\\= {1\over 4}-{x^2\over 16} +{x^4\over 64} -{x^6\over 1024} +{x^8\over 4096}-\cdots \\ \Rightarrow xe^{x^2}-{1\over 4+x^2}= \bbox[red, 2pt]{-{1\over 4}+x+{x^2\over 16}+x^3}-{x^4\over 64}+{x^5\over 2}+\cdots
解答:\textbf{(a) }\cases{P(x,y)=ye^x \\Q(x,y)=e^x+3y^2} \Rightarrow P_y=e^x =Q_x \Rightarrow \bbox[red, 2pt]{\text{Yes, it is conservative}} \\\qquad \Phi(x,y)=\int P\,dx =\int Q\,dy \Rightarrow \Phi=\int ye^x\,dx =\int (e^x +3y^2)\,dy \\\qquad\Rightarrow  \Phi(x,y) =ye^x+\phi(y) =ye^x+y^3+\rho(x) \Rightarrow \text{potential function }\bbox[red, 2pt]{\Phi(x,y) =ye^x+y^3+C} \\\textbf{(b) }\int_C \vec F\cdot d\vec r =\Phi(x(t=3),y(t=3))-\Phi(x(t= 0), y(t=0)) =\Phi(e^6-1,e^{24}-1) -\Phi(0,0) \\\qquad = \bbox[red, 2pt]{(e^{24} -1)e^{e^{6}-1}+(e^{24}-1)^3 }
解答:x^2+y^2+z^2=5 \Rightarrow x^2=5-y^2-z^2=4y^2+4z^2 \Rightarrow y^2+z^2=1 \Rightarrow x^2=4 \\ \Rightarrow S_1\cap S_2 =\{(x,y,z) \mid x^2=4,y^2+z^2=1\} \\ \cases{\nabla (x^2+y^2+z^2-5) =(2x,2y,2z) \\ \nabla (x^2-4y^2-4z^2) =(2x,-8y,-8z)} \\\Rightarrow (2x,2y,2z) \cdot (2x,-8y,-8z) =4x^2-16y^2-16z^2 =0 ,\forall(x,y,z) \in S_1 \cap S_2 \\ \bbox[red, 2pt]{QED}
解答:\textbf{(a) } M_n= \sup\{a_n,a_{n+1},a_{n+2}, \dots\} \Rightarrow M_n \text{ is decreasing and bounded from below}\\ \Rightarrow  \text{By Monotone Convergence Theorem, its limit exists} \Rightarrow \lim_{n\to \infty} M_n \text{ exists}\\ \qquad \text{Similarly, }m_n \text{ is increasing and bounded from above. } \\\Rightarrow  \text{By Monotone Convergence Theorem, its limit exists} \Rightarrow \lim_{n\to \infty} m_n \text{ exists}\\ \qquad \bbox[red, 2pt]{\text{QED}} \\\textbf{(b) } \text{Suppose }\lim_{n\to \infty} M_n= \lim_{n\to \infty} m_n = L , \text{ and let }\epsilon \gt 0 \\\qquad \text{Since } \lim_{N\to \infty} M_N= L \Rightarrow M_N \lt L+ \epsilon, \text{ for some }N\in \mathbb N \Rightarrow a_n\lt L+\epsilon \text{ for }n \ge N \\ \qquad \text{Since }\lim_{K\to \infty} m_K= L \Rightarrow  L- \epsilon\lt m_K, \text{ for some }K\in \mathbb N \Rightarrow L-\epsilon\lt a_n  \text{ for }n \ge K \\ P=\max\{N,K\} \Rightarrow L-\epsilon \lt a_n \lt L+\epsilon \text{ for }n\ge P \Rightarrow \lim_{n\to \infty} a_n =L \Rightarrow \left.\{a_n \right\}_{n=1}^\infty \text{ converges} \\ \bbox[red, 2pt] {\text{QED}}

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

2 則留言:

  1. 訂正一下
    1.第二題,答案應是(9*pi/2)+9
    2.第七題,x^2那項應是:x^2/16

    回覆刪除