Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2025年2月22日 星期六

113年中正大學電機碩士班-線性代數與微分方程詳解

 國立中正大學113學年度碩士班招生考試

科目名稱:線性代數與微分方程
系所組別:電機工程學系

解答:a. {a=1b=0{C=[1011]D=[1000]E=[0110]{rref(C)=rref(E)=I2rank(C)=rank(E)=2rank(D)=1C and E are row equivalentb. {a=0b=1{C=[0111]rref(C)=I2D=[0001]E=[0011]{Null(C)={0}Null(D)=span{(10)}Nul(E)=span{(11)}matrix Cc. C,D, E satisfy rank+nullity=2d. {a=1b=1{C=[1111]D=[1001]E=[0111]{rref(C)=[1100]rref(D)=I2rref(E)=I2C is not full-rank
解答:A is 2 x 3B is 3 x 2B=[abcd00]{AB=[011101][abcd00]=[cdab]BA=[abcd00][011101]=[baa+bdcc+d000]det(AB)=bcad=det(BA)=0bc=addet(B)=0
解答:a. {B={1,2x}B={1,x,2x2}{T1(1)=xT1(2x)=2x2{[T1(1)]B=[010][T1(2x)]B=[001][T1]BB=[001001]b. [T1]BB=[001001]T1([ab])=[0ab]=ax+b(2x2)T2(T1([ab]))=T2(ax+2bx2)=a(x+1)+2b(x+1)2=a+2b+(a+4b)x+2bx2=[a+2ba+4bb]B[T2T1]BB=[121401]
解答:{y
解答:\textbf{a. }\times: y^2y' \Rightarrow \text{ nonlinear} \\\textbf{b. }\bigcirc:(x^2+y^2)y'-xy=0\\ \textbf{c. }\times: (x^2+y^2)dy =xydx \\\textbf{d. }\times: (x^2+y^2)dy-xydx=0 \Rightarrow \cases{P(x,y)=x^2+y^2\\ Q(x,y)=-xy} \Rightarrow \cases{P_x=2x\\ Q_y=-x} \Rightarrow P_x\ne Q_y, \text{not exact} \\ \textbf{e. }\times: y'-{x\over x^2+y^2}y=0 \\故選\bbox[red, 2pt]{(b)}

解答:y''+y=0 \Rightarrow \lambda^2+1=0 \Rightarrow \lambda=\pm i \Rightarrow y_h= c_1 \cos x+c_2 \sin x \\ y_p=Ax\cos x+ Bx\sin x + C\cos (2x)+D \sin(2x) \\ \Rightarrow y_p'=A\cos x-Ax\sin x+B\sin x+ Bx\cos x-2C\sin(2x)+2D\cos(2x) \\ \Rightarrow y_p''=-2A\sin x -Ax\cos x+2B\cos x-Bx\sin x-4C \cos(2x)-4D\sin(2x) \\ \Rightarrow y_p''+y_p=-2A\sin x+2B\cos x-3C\cos(2x)-3D\sin(2x) =8\cos(2x)-4\sin x\\ \Rightarrow \cases{A=2\\B=0\\ C=-8/3\\ D=0} \Rightarrow y_p=2x\cos x-{8\over 3}\cos(2x) \Rightarrow y=y_h+ y_p \\ \Rightarrow y=c_1 \cos x+c_2 \sin x +2x\cos x-{8\over 3}\cos(2x) \\\Rightarrow y'=-c_1\sin x+ c_2\cos x+2\cos x-2x\sin x+{16\over 3}\sin(2x) \\ \Rightarrow \cases{y(\pi/2)= c_2+8/3=-1\\ y'(\pi/2)=-c_1-\pi =0} \Rightarrow \cases{c_1=-\pi\\ c_2= -11/3 }\\ \Rightarrow \bbox[red, 2pt]{y=-\pi\cos x-{11\over 3}\sin x+2x\cos x-{8\over 3}\cos(2x)}
解答:L\{y'\}+ L\{y\}= L\{e^{-3t} \cos(2t)\} \Rightarrow sY(s)-y(0)+Y(s)= {s+3 \over (s+3)^2+2^2} \\\Rightarrow Y(s)= {s+3 \over ((s+3)^2+4)(s+1)} \Rightarrow y(t)= L^{-1}\{Y(s)\} = L^{-1}\left\{ {s+3 \over ((s+3)^2+4)(s+1)} \right\}\\ =L^{-1} \left\{ {1\over 4(s+1)} -{1\over 4} \cdot {s+3\over (s+3)^2+4} +{1\over 4} \cdot {2\over (s+3)^2+4}\right\}\\ \Rightarrow \bbox[red, 2pt]{y(t)={1\over 4} e^{-t}-{1\over 4}e^{-3t} \cos(2t)+{1\over 4} e^{-3t}\sin(2t)}
解答:\cases{(D+5)x+y=0\\ -4x+(D+1)y=0} \Rightarrow \cases{(D+1)(D+5)x+(D+1)y=0\\ -4x+(D+1)y=0} \Rightarrow (D^2+6D+5)x+4x=0 \\ \Rightarrow (D+3)^2x=0 \Rightarrow x=c_1e^{-3t}+ c_2 te^{-3t} \Rightarrow Dx=(-3c_1+c_2)e^{-3t}  -3c_2te^{-3t}\\ \Rightarrow  (D+5)x =(2c_1+c_2)e^{-3t}  +2c_2te^{-3t} \Rightarrow y=-(D+5)x =-(2c_1+c_2)e^{-3t}  -2c_2te^{-3t}\\ \Rightarrow \bbox[red, 2pt]{\cases{x(t) =c_1e^{-3t}+ c_2 te^{-3t}\\ y(t)=-(2c_1+c_2)e^{-3t}  -2c_2te^{-3t}}}
解答:y'''+4y'=0 \Rightarrow \lambda^3+4\lambda=0 \Rightarrow \lambda(\lambda^2+4)=0 \Rightarrow \lambda=0, \pm   2 i \Rightarrow y_c=c_1\cos  2x+ c_2\sin 2x +c_3\\ \Rightarrow \cases{y_1=\cos 2x\\ y_2=\sin 2x\\ y_3=1} \Rightarrow W= \begin{vmatrix} y_1& y_2& y_3 \\ y_1' & y_2'& y_3' \\y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} \cos 2x& \sin 2x& 1 \\ -2\sin 2x & 2\cos 2x& 0 \\-4\cos 2x & -4\sin 2x & 0 \end{vmatrix}  = \begin{vmatrix}    -2\sin 2x & 2\cos 2x  \\-4\cos 2x & -4\sin 2x  \end{vmatrix}=8\\ \Rightarrow \cases{W_1= \begin{vmatrix} y_2& y_3\\ y_2'& y_3'\end{vmatrix} = \begin{vmatrix} \sin 2x& 1\\ 2\cos 2x& 0\end{vmatrix} =-2\cos 2x \\ W_2=\begin{vmatrix} y_1& y_3\\ y_1'& y_3'\end{vmatrix} = \begin{vmatrix} \cos 2x& 1\\ -2\sin 2x& 0\end{vmatrix} =2\sin 2x\\ W_3= \begin{vmatrix} y_1& y_2\\ y_1'& y_2'\end{vmatrix} = \begin{vmatrix} \cos 2x& \sin 2x\\ -2\sin 2x& 2\cos 2x\end{vmatrix} = 2} \Rightarrow \cases{u_1'=-2\cos 2x \sec 2x/8=-1/4 \\ u_2'=-2\sin 2x \sec 2x /8= -\tan 2x/4 \\ u_3'=2 \sec 2x/8= \sec 2x/4} \\ \Rightarrow \cases{u_1= -x/4\\ u_2 =\ln(\cos 2x)/8 \\u_3= \ln(\sec 2x+ \tan 2x)/8} \Rightarrow y_p=u_1y_1+ u_2y_2+u_3y_3\\ \Rightarrow y_p= -{x\over 4}\cos 2x+{\ln \cos(2x)\over 8}\sin 2x+ {1\over 8} \ln(\sec 2x+\tan 2x) \Rightarrow y=y_c+y_p \\ \Rightarrow \bbox[red, 2pt]{y= c_1\cos  2x+ c_2\sin 2x +c_3-{x\over 4}\cos 2x+{\ln \cos(2x)\over 8}\sin 2x+ {1\over 8} \ln(\sec 2x+\tan 2x) }

==================== END ======================
解題僅供參考,其他歷年試題及詳解


2 則留言:

  1. 第6題,exp(-3t)*cos(2t)的laplace transform錯了,所以答案也不對

    回覆刪除