國立中正大學113學年度碩士班招生考試
科目名稱:線性代數與微分方程
系所組別:電機工程學系
解答:a. {a=1b=0⇒{C=[1011]D=[1000]E=[0110]⇒{rref(C)=rref(E)=I2⇒rank(C)=rank(E)=2rank(D)=1⇒C and E are row equivalentb. {a=0b=1⇒{C=[0111]⇒rref(C)=I2D=[0001]E=[0011]⇒{Null(C)={→0}Null(D)=span{(10)}Nul(E)=span{(1−1)}⇒matrix Cc. C,D, E satisfy rank+nullity=2d. {a=1b=1⇒{C=[1111]D=[1001]E=[0111]⇒{rref(C)=[1100]rref(D)=I2rref(E)=I2⇒C is not full-rank解答:A is 2 x 3⇒B is 3 x 2⇒B=[abcd00]⇒{AB=[011101][abcd00]=[cdab]BA=[abcd00][011101]=[baa+bdcc+d000]⇒det(AB)=bc−ad=det(BA)=0⇒bc=ad⇒det(B)=0
解答:a. {B={1,2x}B′={1,x,2x2}⇒{T1(1)=xT1(2x)=2x2⇒{[T1(1)]B′=[010][T1(2x)]B′=[001]⇒[T1]B→B′=[001001]b. [T1]B→B′=[001001]⇒T1([ab])=[0ab]=ax+b⋅(2x2)⇒T2(T1([ab]))=T2(ax+2bx2)=a(x+1)+2b(x+1)2=a+2b+(a+4b)x+2bx2=[a+2ba+4bb]B′⇒[T2∘T1]B→B′=[121401]
解答:{y″⇒second orderyy′⇒ nonlinear,故選(e)

解答:a. ×:y2y′⇒ nonlinearb. ◯:(x2+y2)y′−xy=0c. ×:(x2+y2)dy=xydxd. ×:(x2+y2)dy−xydx=0⇒{P(x,y)=x2+y2Q(x,y)=−xy⇒{Px=2xQy=−x⇒Px≠Qy,not exacte. ×:y′−xx2+y2y=0故選(b)
解答:y″+y=0⇒λ2+1=0⇒λ=±i⇒yh=c1cosx+c2sinxyp=Axcosx+Bxsinx+Ccos(2x)+Dsin(2x)⇒y′p=Acosx−Axsinx+Bsinx+Bxcosx−2Csin(2x)+2Dcos(2x)⇒y″p=−2Asinx−Axcosx+2Bcosx−Bxsinx−4Ccos(2x)−4Dsin(2x)⇒y″p+yp=−2Asinx+2Bcosx−3Ccos(2x)−3Dsin(2x)=8cos(2x)−4sinx⇒{A=2B=0C=−8/3D=0⇒yp=2xcosx−83cos(2x)⇒y=yh+yp⇒y=c1cosx+c2sinx+2xcosx−83cos(2x)⇒y′=−c1sinx+c2cosx+2cosx−2xsinx+163sin(2x)⇒{y(π/2)=c2+8/3=−1y′(π/2)=−c1−π=0⇒{c1=−πc2=−11/3⇒y=−πcosx−113sinx+2xcosx−83cos(2x)
解答:L{y′}+L{y}=L{e−3tcos(2t)}⇒sY(s)−y(0)+Y(s)=s+3(s+3)2+22⇒Y(s)=s+3((s+3)2+4)(s+1)⇒y(t)=L−1{Y(s)}=L−1{s+3((s+3)2+4)(s+1)}=L−1{14(s+1)−14⋅s+3(s+3)2+4+14⋅2(s+3)2+4}⇒y(t)=14e−t−14e−3tcos(2t)+14e−3tsin(2t)
解答:{(D+5)x+y=0−4x+(D+1)y=0⇒{(D+1)(D+5)x+(D+1)y=0−4x+(D+1)y=0⇒(D2+6D+5)x+4x=0⇒(D+3)2x=0⇒x=c1e−3t+c2te−3t⇒Dx=(−3c1+c2)e−3t−3c2te−3t⇒(D+5)x=(2c1+c2)e−3t+2c2te−3t⇒y=−(D+5)x=−(2c1+c2)e−3t−2c2te−3t⇒{x(t)=c1e−3t+c2te−3ty(t)=−(2c1+c2)e−3t−2c2te−3t
解答:y‴+4y′=0⇒λ3+4λ=0⇒λ(λ2+4)=0⇒λ=0,±2i⇒yc=c1cos2x+c2sin2x+c3⇒{y1=cos2xy2=sin2xy3=1⇒W=|y1y2y3y′1y′2y′3y″1y″2y″3|=|cos2xsin2x1−2sin2x2cos2x0−4cos2x−4sin2x0|=|−2sin2x2cos2x−4cos2x−4sin2x|=8⇒{W1=|y2y3y′2y′3|=|sin2x12cos2x0|=−2cos2xW2=|y1y3y′1y′3|=|cos2x1−2sin2x0|=2sin2xW3=|y1y2y′1y′2|=|cos2xsin2x−2sin2x2cos2x|=2⇒{u′1=−2cos2xsec2x/8=−1/4u′2=−2sin2xsec2x/8=−tan2x/4u′3=2sec2x/8=sec2x/4⇒{u1=−x/4u2=ln(cos2x)/8u3=ln(sec2x+tan2x)/8⇒yp=u1y1+u2y2+u3y3⇒yp=−x4cos2x+lncos(2x)8sin2x+18ln(sec2x+tan2x)⇒y=yc+yp⇒y=c1cos2x+c2sin2x+c3−x4cos2x+lncos(2x)8sin2x+18ln(sec2x+tan2x)
解答:y″+y=0⇒λ2+1=0⇒λ=±i⇒yh=c1cosx+c2sinxyp=Axcosx+Bxsinx+Ccos(2x)+Dsin(2x)⇒y′p=Acosx−Axsinx+Bsinx+Bxcosx−2Csin(2x)+2Dcos(2x)⇒y″p=−2Asinx−Axcosx+2Bcosx−Bxsinx−4Ccos(2x)−4Dsin(2x)⇒y″p+yp=−2Asinx+2Bcosx−3Ccos(2x)−3Dsin(2x)=8cos(2x)−4sinx⇒{A=2B=0C=−8/3D=0⇒yp=2xcosx−83cos(2x)⇒y=yh+yp⇒y=c1cosx+c2sinx+2xcosx−83cos(2x)⇒y′=−c1sinx+c2cosx+2cosx−2xsinx+163sin(2x)⇒{y(π/2)=c2+8/3=−1y′(π/2)=−c1−π=0⇒{c1=−πc2=−11/3⇒y=−πcosx−113sinx+2xcosx−83cos(2x)
解答:L{y′}+L{y}=L{e−3tcos(2t)}⇒sY(s)−y(0)+Y(s)=s+3(s+3)2+22⇒Y(s)=s+3((s+3)2+4)(s+1)⇒y(t)=L−1{Y(s)}=L−1{s+3((s+3)2+4)(s+1)}=L−1{14(s+1)−14⋅s+3(s+3)2+4+14⋅2(s+3)2+4}⇒y(t)=14e−t−14e−3tcos(2t)+14e−3tsin(2t)
解答:{(D+5)x+y=0−4x+(D+1)y=0⇒{(D+1)(D+5)x+(D+1)y=0−4x+(D+1)y=0⇒(D2+6D+5)x+4x=0⇒(D+3)2x=0⇒x=c1e−3t+c2te−3t⇒Dx=(−3c1+c2)e−3t−3c2te−3t⇒(D+5)x=(2c1+c2)e−3t+2c2te−3t⇒y=−(D+5)x=−(2c1+c2)e−3t−2c2te−3t⇒{x(t)=c1e−3t+c2te−3ty(t)=−(2c1+c2)e−3t−2c2te−3t
解答:y‴+4y′=0⇒λ3+4λ=0⇒λ(λ2+4)=0⇒λ=0,±2i⇒yc=c1cos2x+c2sin2x+c3⇒{y1=cos2xy2=sin2xy3=1⇒W=|y1y2y3y′1y′2y′3y″1y″2y″3|=|cos2xsin2x1−2sin2x2cos2x0−4cos2x−4sin2x0|=|−2sin2x2cos2x−4cos2x−4sin2x|=8⇒{W1=|y2y3y′2y′3|=|sin2x12cos2x0|=−2cos2xW2=|y1y3y′1y′3|=|cos2x1−2sin2x0|=2sin2xW3=|y1y2y′1y′2|=|cos2xsin2x−2sin2x2cos2x|=2⇒{u′1=−2cos2xsec2x/8=−1/4u′2=−2sin2xsec2x/8=−tan2x/4u′3=2sec2x/8=sec2x/4⇒{u1=−x/4u2=ln(cos2x)/8u3=ln(sec2x+tan2x)/8⇒yp=u1y1+u2y2+u3y3⇒yp=−x4cos2x+lncos(2x)8sin2x+18ln(sec2x+tan2x)⇒y=yc+yp⇒y=c1cos2x+c2sin2x+c3−x4cos2x+lncos(2x)8sin2x+18ln(sec2x+tan2x)
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第6題,exp(-3t)*cos(2t)的laplace transform錯了,所以答案也不對
回覆刪除打錯一個字, 已修訂,謝謝
刪除