109年公務人員高等考試三級考試
類科:醫學工程、 電力工程、 電子工程、 電信工程科目:工程數學
甲、申論題: (50分)

解:
先求齊性解,即y″−4xy′+4x2y=0⇒x2y″−4xy′+4y=0令y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2代回上⇒m(m−1)xm−4mxm+4xm=0⇒m(m−1)−4m+4=0⇒m2−5m+4=0⇒(m−4)(m−1)=0⇒m=4,1⇒yh=C1x4+C2x接著用參數變異法求特解:令{y1=x4y2=xr(x)=x2+x⇒{y′1=4x3y′2=1⇒W=|x4x4x31|=−3x4令{u′(x)=−y2r(x)/W=3(x+1)/x2v′(x)=y1r(x)/W=−(x2+x)/3⇒{u(x)=(lnx−1/x)/3v(x)=−x3/9−x2/6⇒yp=uy1+vy2=13x4lnx−12x3−19x4⇒y=yh+yp=C1x4+C2x+13x4lnx−12x3−19x4⇒y=C3x4+C2x+13x4lnx−12x3
解:
H(2−t)=1−H(t−2)⇒3H(2−t)=3−3H(t−2)⇒L{3H(2−t)}=L{3−3H(t−2)}=3L{1}−3L{H(t−2)}=3s−3⋅e−2ss=3(1−e−2s)/s

解:
i=cosπ2+isinπ2=eiπ/2⇒logi=π2i⇒i1+i=e(1+i)logi=e(1+i)π2i=e−π2+π2i=e−π/2⋅eπi/2=ie−π/2=a+bi⇒{a=0b=e−π/2

解:
u⋅v|v|=(3ˆi+ˆj+ˆk)⋅(ˆi+ˆj+2ˆk)|(ˆi+ˆj+2ˆk)|=3+1+2√1+1+4=6√6=√6

解:
∫∞0ae−xdx=1⇒[−ae−x]|∞0=(0−(−a))=1⇒a=1⇒P(1≤x≤2)=∫21e−xdx⇒[−e−x]|21=−e−2+e−1=1e−1e2,故選()

解:
(一)A=[10−1012210]⇒det(A)=0+0+0+2−2+0=0(二)A=[10−1012210]⇒det(A−λI)=0⇒|1−λ0−101−λ221−λ|=0⇒−λ(1−λ)2=0⇒特徵值為0及1λ1=0⇒(A−λ1)X=0⇒[10−1012210][x1x2x3]=0⇒{x3=x1x2=−2x1,取v1=[1−21]λ2=1⇒(A−λ2)X=0⇒[00−100221−1][x1x2x3]=0⇒{x3=02x1+x2=x3,取v2=[1−20]答:特徵值為0及1,相對的持徵向量為[1−21]及[1−20](三)A=[10−1012210]−2r1+r3→[10−1012012]−r2+r3→[10−1012000]AX=0⇒[10−1012000][x1x2x3]=0⇒{x1=x3x2+2x3=0⇒[x1x2x3]=t[1−21],t∈RNull(A)=span([1−21])

解:
{A(1,2,2)B(0,1,−2)C(1,4,1)D(2,5,5)⇒{→AB=(−1,−1,−4)→AC=(0,2,−1)→AD=(1,3,3)⇒→AC=→AB+→AD⇒由→AB及→AD求面積⇒面積=√|→AB|2|→AD|2−(→AB⋅→AD)2=√18×19−162=√86,故選(C)

解:
{S1:x+2y−2z=3S2:2x+4y−4z=7⇒{S1:x+2y−2z=3S2:x+2y−2z=7/2⇒dist(S1,S2)=|3−7/2|√12+22+22=1/23=1/6,故選(A)

解:
det

解:
\left[\begin{array}{rrr|rrr} 1& 0 & 2 & 1 & 0 & 0\\ 0 & -1 & 1 & 0 & 1 & 0\\ 3& 2 & 0 & 0 & 0 &1\end{array} \right] \xrightarrow{-3r_1+r_3} \left[\begin{array}{rrr|rrr} 1& 0 & 2 & 1 & 0 & 0\\ 0 & -1 & 1 & 0 & 1 & 0\\ 0& 2 & -6 & -3 & 0 &1\end{array} \right] \xrightarrow{r_3/2}\\\left[\begin{array}{rrr|rrr} 1& 0 & 2 & 1 & 0 & 0\\ 0 & -1 & 1 & 0 & 1 & 0\\ 0& 1 & -3 & -3/2 & 0 &1/2\end{array} \right] \xrightarrow{r_2+r_3} \left[\begin{array}{rrr|rrr} 1& 0 & 2 & 1 & 0 & 0\\ 0 & -1 & 1 & 0 & 1 & 0\\ 0& 0 & -2 & -3/2 & 1 &1/2\end{array} \right] \xrightarrow{-r_2,-r_3/2}\\\left[\begin{array}{rrr|rrr} 1& 0 & 2 & 1 & 0 & 0\\ 0 & 1 & -1 & 0 & -1 & 0\\ 0& 0 & 1 & 3/4 & -1/2 &-1/4\end{array} \right] \xrightarrow{-2r_3+r_1, r_3+r_1} \left[\begin{array}{rrr|rrr} 1& 0 & 0 & -1/2 & 1 & 1/2\\ 0 & 1 & 0 & 3/4 & -3/2 & -1/4\\ 0& 0 & 1 & 3/4 & -1/2 &-1/4\end{array} \right] \\\Rightarrow A^{-1}=\left[\begin{array}{rrr} -1/2 & 1 & 1/2\\ 3/4 & -3/2 & -1/4\\ 3/4 & -1/2 &-1/4\end{array} \right] =\left[\begin{array}{rrr} a & b & c\\ d & e & f\\ g & h &i\end{array} \right] \Rightarrow a+e+i=-1/2-3/2-1/4=-9/4\\,故選\bbox[red, 2pt]{(C )}

解:
\cases{2x+y=u \\3x+4y=v} \Rightarrow \cases{x=4u/5-v/5 \\y=-3u/5+2v/5} \Rightarrow T^{-1}(u,v)=(4u/5-v/5,-3u/5+2v/5)\\ \Rightarrow T^{-1}(5,6)=(4-6/5,-3+12/5)=(14/5,-3/5),故選\bbox[red, 2pt]{(A )}

解:
\det(A-\lambda I)=0 \Rightarrow \left\vert\matrix{1-\lambda & 3\\2& -\lambda} \right \vert=0 \Rightarrow (\lambda-3)(\lambda+2)=0 \Rightarrow \lambda_1=-2,\lambda_2=3\\ (A-\lambda_1I)X=0 \Rightarrow \left[\matrix{3 & 3\\2& 2} \right]\left[\matrix{x_1 \\x_2} \right] \Rightarrow x_1+x_2=0,取v_1=\left[\matrix{-1 \\1} \right] \\ (A-\lambda_2I)X=0 \Rightarrow \left[\matrix{-2 & 3\\2& -3} \right]\left[\matrix{x_1 \\x_2} \right] \Rightarrow 2x_1=3x_2,取v_2 = \left[\matrix{3/2 \\1} \right] \\ 令P=[av_1 \;bv_2] = \left[\matrix{-a & 3b/2\\a& b} \right]=X \xrightarrow{a=-1,b=2} X=\left[\matrix{1 & 3\\ -1& 2} \right] \Rightarrow 答案選\bbox[red,2pt]{(A)}\\若令P=[av_2 \;bv_1] = \left[\matrix{3a/2 & -b\\a& b} \right]=X \xrightarrow{a=2,b=-1} X=\left[\matrix{3 & 1\\2& -1} \right]\Rightarrow 答案選\bbox[red,2pt]{(C)}

解:
1+i=\sqrt 2(\cos {\pi\over 4}+i\sin {\pi\over 4})=\sqrt 2e^{i\pi/4} \Rightarrow (1+i)^{1/4} =(\sqrt 2e^{i\pi/4} )^{1/4} =2^{1/8}e^{i\pi/16}\\=2^{1/8}(\cos {\pi\over 16}+i\sin {\pi\over 16}),故選\bbox[red, 2pt]{(A )}

解:
本題題意:f(z)={6-2i \over 1-i},求\overline{f(z)}。\\ =f(z)={(6-2i)(1+i) \over (1-i)(1+i)} = {8+4i \over 2} =4+2i \Rightarrow \overline{f(z)}=4-2i,故選\bbox[red, 2pt]{(C )}

解:
f(z)={ie^z \over (z-1+i)^2} \Rightarrow \text{Res}f(1-i) = \lim_{z\to 1-i} {d\over dz}\left[(z-(1-i))^2f(z) \right] = \lim_{z\to 1-i} {d\over dz}\left[ie^z \right] \\ =\lim_{z\to 1-i} ie^z =ie^{1-i} =ie^1\cdot e^{i(-1)} =ie(\cos(-1)+i\sin(-1))=ie(\cos 1-i\sin 1)\\ \Rightarrow \oint_c f(z)\;dz = 2\pi \times\text{Res}f(1-i) =2\pi i\times ie(\cos 1-i\sin 1)=-2\pi e(\cos 1-\sin 1),故選\bbox[red, 2pt]{(B )}

解:
(C)\times: z= {1+i\over \sqrt 2} \Rightarrow |z|\not \lt 1 \Rightarrow 發散,故選\bbox[red, 2pt]{(C )}

解:
\lambda^2+1.25\lambda -0.875=0 \Rightarrow (\lambda+1.75)(\lambda-0.5)=0 \Rightarrow \lambda_1=0.5,\lambda_2=-1.75 \\ \Rightarrow y=C_1e^{0.5x} +C_2e^{-1.75x},故選\bbox[red, 2pt]{(B )}

解:
令\cases{P(x,y)=3x^2+xy^\alpha \\ Q(x,y)=-x^2y^{\alpha-1}y'} \Rightarrow 3x^2+xy^\alpha -x^2y^{\alpha-1}y'=0 \equiv P(x,y)dx+Q(x,y)dy=0 \\ 正合\Rightarrow {\partial P\over \partial y} = {\partial Q\over \partial x} \Rightarrow \alpha xy^{\alpha-1} =-2xy^{\alpha-1}\Rightarrow \alpha=-2,故選\bbox[red, 2pt]{(A)}

解:
\lambda^4+4\lambda^3 +7\lambda^2+6\lambda+2=0 \Rightarrow (\lambda+1)^2(\lambda^2+2\lambda+2) \Rightarrow \lambda=-1(重根), -1\pm i \\ \Rightarrow y=(C_1+C_2x)e^{-x} +e^{-x}(C_3\cos x+C_4 \sin x),故選\bbox[red, 2pt]{(C)}

解:
由於v是常數,不是x的函數,因此將原式同除以x\\,即x^2y''+xy'+(k^2x^2-v^2)y=0 \Rightarrow xy''+y'+(k^2x-{v^2\over x})y=0\\ 因此(p(x)y')'= xy''+y'= (xy')' \Rightarrow p(x)=x,故選\bbox[red, 2pt]{( C)}

解:
F(s)=L\{f(t)\} = \int_0^\infty f(t)e^{-st}\;dt \Rightarrow F(2)=L\{t\cos (t)\} = \int_0^\infty t\cos(t) e^{-2t}\;dt\\ 由於 F(s)=L\{t\cos (t)\} ={s^2-1\over (s^2+1)^2} \Rightarrow F(2)= {3\over 25},故選\bbox[red, 2pt]{(B)}

解:
{e^{-2s} \over s(s^2+4)} = e^{-2s}\left({1\over 4}({1\over s}-{s\over s^2+4)} \right) \Rightarrow L^{-1}\{{e^{-2s} \over s(s^2+4)}\} ={1 \over 4}\left(L^{-1}\{ e^{-2s}\cdot {1\over s}\} -L^{-1}\{ e^{-2s}\cdot {s\over s^2+4}\}\right)\\ = {1 \over 4}\left(u(t-2) -u(t-2)\cos2(t-2)\}\right) = \left({1\over 4}-{1\over 4}\cos 2(t-2) \right)u(t-2),故選\bbox[red, 2pt]{(C )}

解:
f(x)=1+\sin^2 (2x) \Rightarrow \cases{f(x)為偶函數\Rightarrow b_n=0(只有(C),(D)可能正確)\\週期為{\pi \over 2}}\\ a_0={2\over \pi}\int_0^{\pi/2} (1+\sin^2(2x))\;dx ={2\over \pi} \left.\left[{3\over 2}x-{1\over 8}\sin(4x) \right] \right|_0^{\pi/2} ={3\over 2} \Rightarrow 只有(C)正確,故選\bbox[red, 2pt]{(C)}

解:

解:

解:
(C)\bigcirc: A、B獨立\Rightarrow \cases{P(A\cap B)= P(A)P(B)\\ P(A\cap \bar B) = P(A)P(\bar B)} \Rightarrow \cases{P(A\mid B)={P(A\cap B) \over P(B)}={P(A)P(B) \over P(B)}=P(A)\\ P(A\mid \bar B)= {P(A)P(\bar B) \over P(\bar B)}=P(A)} \\\qquad \Rightarrow P(A\mid B)=P(A\mid \bar B)\\(D)\times:P(A\cup B)=P(A)+P(B)- P(A \cap B)\ne P(A)+P(B),故選\bbox[red, 2pt]{(D )}

解:
\int_{-\infty}^\infty f(x)\;dx =1 \Rightarrow \int_0^2 C(4x-2x^2)\;dx=1 \Rightarrow C\left. \left[2x^2-{2\over 3}x^3 \right] \right|_0^2=1 \Rightarrow C(8-{16\over 3})=1 \\ \Rightarrow C= {3\over 8},故選\bbox[red, 2pt]{(C )}

解:
E(X)={d\over dt}M_X(t)|_{t=0} ={d\over dt}e^{t+2t^2}|_{t=0} =(1+4t)e^{t+2t^2}|_{t=0} = (1+0)e^0=1,故選\bbox[red, 2pt]{(C )}
-- END (僅供參考) --
可以麻煩您解答109年高考三級氣象類科的應用數學嗎?還有普考氣象的微積分
回覆刪除謝謝你!
剛剛 POST...努力中......
刪除大大
回覆刪除H(2−t)=1−H(t−2) 第二題計算題一開始是單位不階,但小弟轉不過來 能否講解一下
謝謝大大
畫了圖理解U(t-2), t>2 ,u(t-2) =1
回覆刪除U(2-t) ,t >2 ,u(2-t) =0
可得U(2-t)=1-U(t-2)
小弟是畫圖理解...我的觀念對嗎?
謝謝大大
Yes,完全正確
刪除https://imgur.com/nSMjzb0
回覆刪除https://imgur.com/26P8jEP
https://imgur.com/DHHccQa
https://imgur.com/DWFLYGs
您好 我先把這次氣象高考三級的應用數學我自己寫的答案跟您分享,其中第一題跟第五題比較令我困惑QQ
尤其是第一題寫出四個不等式之後要取交集還真不知道怎麼取@@
第五題其實在Kreyszig課本上面有https://imgur.com/TUXeZHt
但不知道我的算法對不對@@
謝謝
謝謝您的資料,目前在貼其他考題的詳解,氣象高考三級的應用數學我會儘快....
刪除請問第18題(C)為何一定成立?可以更詳細一點說明嗎,或是圖解之類的,感恩!
回覆刪除已增加第18題(C)的說明,請再詳閱!
刪除感謝!
刪除高考的機率部分有建議哪本書參考嗎?
回覆刪除請問有氣象類科110高考的解答嗎?
回覆刪除