教育部受託辦理108學年度
公立高級中等學校教師甄選
公立高級中等學校教師甄選
數學科試題
第壹部分一、單選題
解:
$$\cases{\cos 200^\circ = -\cos 20^\circ < 0\\ \sin 200^\circ = -\sin 20^\circ < 0} \\ \cases{(A)1+\cos 200^\circ +i\sin 200^\circ \Rightarrow 第4象限\\ (B)-1+\cos 200^\circ +i\sin 200^\circ \Rightarrow 第3象限 \\(C)1+\cos 200^\circ -i\sin 200^\circ \Rightarrow 第1象限 \\(D)1-\cos 200^\circ -i\sin 200^\circ \Rightarrow 第1象限} \Rightarrow 第4象限的主幅角最大,故選\bbox[red, 2pt]{(A)}$$
解:
$$(x-{2\over x})^n = \sum_{k=0}^n\left( C^n_kx^k\cdot {(-2)^{n-k}\over x^{n-k}} \right) = \sum_{k=0}^n C^n_k (-2)^{n-k} x^{2k-n} \\\Rightarrow \cases{{1\over x^2}的係數= C^n_{(n-2)/2}(-2)^{(n-2)/2} \\ {1\over x^4}的係數= C^n_{(n-4)/2}(-2)^{(n-4)/2 }} \Rightarrow {C^n_{(n-2)/2}(-2)^{(n-2)/2}\over C^n_{(n-4)/2}(-2)^{(n-4)/2}}=-1 \Rightarrow {\left({ n+4\over 2} \right) \over \left({ n-2\over 2} \right)}\cdot (-2)=-1\\ \Rightarrow {n+4 \over n-2} ={1\over 2} \Rightarrow n=8,故選\bbox[red, 2pt]{(C)}$$
解:
4. 一圓周上有 10 個等分點,從這 10 個等分點中,選擇 4 個等分點為頂點構成一個
四邊形,則此四邊形為梯形的機率為何?
四邊形,則此四邊形為梯形的機率為何?
(A) 8/21 (B)4/21 (C)1/3 (D) 2/7
$$正十邊形的頂角連線相互平行有兩種狀況,上圖左有4條、上圖右有5條平行線;\\4條平行線可以形成2+1+1=4個梯形(矩形不是梯形),\\5條平行線可以形成3+2+2+1=8個梯形;因此總共有
5(4+8)=60個梯形;\\10個頂點可形成C^{10}_4=210四邊形,成為梯形的機率為60/210=2/7,故選\bbox[red,2pt]{(D)}$$
解:
$$本題相當於求x^4=-1,81,16i共有幾個非實數根\\\cases{x^4=-1 \Rightarrow 4根皆非實數 \\x^4=81 \Rightarrow 兩根:\pm 3i為非實數\\ x^4=16i \Rightarrow 4根皆非實數} \Rightarrow 共有4+2+4=10根為非實數,故選\bbox[red,2pt]{(A)}$$
7. 小明在森林中迷了路,若繼續往前走則經過 5 分鐘後會回到原地,若返回走則有一半的機會於 5 分鐘後回到原地,另一半的機會於 10 分鐘後走出森林;假設小明向前走的機率為 0.6,問小明能夠走出森林所花費時間的期望值為?
(A)25 (B)30 (C)40 (D)45 分鐘
解:
$$f(x)={1\over 1-x} =1+x+x^2+\cdots +x^n+\cdots \\\Rightarrow f'(x)={1\over (1-x)^2}=1+2x+3x^2+\cdots+(n+1)x^n+\cdots \\ \Rightarrow f''(x)= {2\over (1-x)^3}=2+6x+12x^2+\cdots +n(n+1)x^{n-1}+\cdots\\ \Rightarrow {1\over 2}f''(x)= {1\over (1-x)^3}=1+3x+6x^2+\cdots +{(n+1)n\over 2}x^{n-1}+\cdots \\ \Rightarrow {1\over (1-x)^3}即為所求,故選 \bbox[red, 2pt]{(B)}$$
$$f(x)={1\over 1-x} =1+x+x^2+\cdots +x^n+\cdots \\\Rightarrow f'(x)={1\over (1-x)^2}=1+2x+3x^2+\cdots+(n+1)x^n+\cdots \\ \Rightarrow f''(x)= {2\over (1-x)^3}=2+6x+12x^2+\cdots +n(n+1)x^{n-1}+\cdots\\ \Rightarrow {1\over 2}f''(x)= {1\over (1-x)^3}=1+3x+6x^2+\cdots +{(n+1)n\over 2}x^{n-1}+\cdots \\ \Rightarrow {1\over (1-x)^3}即為所求,故選 \bbox[red, 2pt]{(B)}$$
解:
$$(A)\times: \cases{y=x^2-1 拋物線凹向上\\y=2^{-|x|} > 0} \Rightarrow 交於2點 \\(B)\bigcirc: x-1=\log_2 x \Rightarrow x=1,2 \Rightarrow \cases{y=x-1\\ y=\log_2 x}交於(1,0)及(2,1)兩點; \\\qquad 又y=\log_2 (-x) 與y=\log_2 x 對稱Y軸,並與直線y=x-1在第3象限交於1點,共3個交點\\ (C)\bigcirc: \cases{y=\tan x(0\le x\le 2\pi)三條曲線\\ y=1-x左上右下直線}\Rightarrow 交於3點\\ (D) \bigcirc: y=\log_{10} x為遞增函數且 \log_{10} 10=1,即\log_{10} x > \cos x ,對所有x>10;\\ \qquad 令f(x)=\log_{10}x-\cos x\Rightarrow \cases{ 2\pi < 10 < 3\pi \Rightarrow \cos 10 < 1 \Rightarrow f(10)=\log_{10} 10-\cos 10 > 0\\ f(2\pi \approx 6.28)=\log_{10}2\pi -\cos 2\pi < 0 =\log_{10} 2\pi -1< 0 \\ f(3\pi/2\approx 4.71) =\log_{10}(3\pi/2)-\cos(3\pi/2) =\log_{10}(3\pi/2)-0>0 \\ f(1/10<\pi/2)=\log_{10}(1/10)-\cos (1/10)=-1-\cos(1/10) < 0}\\ \qquad 共有3個根,三區間({1\over 10},{3\pi \over 2}),({3\pi \over 2},2\pi),(2\pi,3\pi)各有1根
\\ 故選\bbox[red, 2pt]{(BCD)}$$
$$(A)\times: \cases{y=x^2-1 拋物線凹向上\\y=2^{-|x|} > 0} \Rightarrow 交於2點 \\(B)\bigcirc: x-1=\log_2 x \Rightarrow x=1,2 \Rightarrow \cases{y=x-1\\ y=\log_2 x}交於(1,0)及(2,1)兩點; \\\qquad 又y=\log_2 (-x) 與y=\log_2 x 對稱Y軸,並與直線y=x-1在第3象限交於1點,共3個交點\\ (C)\bigcirc: \cases{y=\tan x(0\le x\le 2\pi)三條曲線\\ y=1-x左上右下直線}\Rightarrow 交於3點\\ (D) \bigcirc: y=\log_{10} x為遞增函數且 \log_{10} 10=1,即\log_{10} x > \cos x ,對所有x>10;\\ \qquad 令f(x)=\log_{10}x-\cos x\Rightarrow \cases{ 2\pi < 10 < 3\pi \Rightarrow \cos 10 < 1 \Rightarrow f(10)=\log_{10} 10-\cos 10 > 0\\ f(2\pi \approx 6.28)=\log_{10}2\pi -\cos 2\pi < 0 =\log_{10} 2\pi -1< 0 \\ f(3\pi/2\approx 4.71) =\log_{10}(3\pi/2)-\cos(3\pi/2) =\log_{10}(3\pi/2)-0>0 \\ f(1/10<\pi/2)=\log_{10}(1/10)-\cos (1/10)=-1-\cos(1/10) < 0}\\ \qquad 共有3個根,三區間({1\over 10},{3\pi \over 2}),({3\pi \over 2},2\pi),(2\pi,3\pi)各有1根
\\ 故選\bbox[red, 2pt]{(BCD)}$$
解:
3 & RRR & 1 & p^3\\ 3 & WWW & 1 & (1-p)^3\\
4 & (2R1W)R & 3 & 3p^3(1-p) \\ 4 &(2W1R)W& 3 & 3p(1-p)^3\\
5 & (2R2W)R & 6 & 6p^3(1-p)^2 \\ 5 & (2W2R)W & 6 & 6p^2(1-p)^3
\\\hline\end{array} \\
\Rightarrow f(p)=3(p^3+(1-p)^3) +4(3p^3(1-p) +3p(1-p)^3)+5(6p^3(1-p)^2 +6p^2(1-p)^3)\\=6p^4-12p^3+3p^2+3p+3 \\\\(A)\bigcirc: f(0)=3\\ (B)\times: f(p)為4次式\\ (C)\bigcirc: f'(p)=24p^3-36p^2+6p+3 =3(2p-1)(4p^2-4p-1)\\ \qquad \Rightarrow f''(p)=72p^2-72p+6 \Rightarrow \cases{f'(1/2)=0\\ f''(1/2)=-12<0} \Rightarrow f(1/2)為最大值\\ (D)\times: p=1/2 \Rightarrow \cases{辦5場機率=6p^3(1-p)^2+6p^2(1-p)^3 =12\cdot {1\over 2^5}=6\cdot {1\over 2^4}\\辦4場機率=3p^3(1-p)+3p(1-p)^3 =6\cdot {1\over 2^4}} \\ \qquad \Rightarrow 辦5場機率=辦4場機率\\ 故選\bbox[red, 2pt]{(AC)}$$
解:
$$(A)\bigcirc: z^4+z^3+z^2+z+1=0 \Rightarrow (z-1)( z^4+z^3+z^2+z+1) =0 \Rightarrow z^5=1\\ \qquad \Rightarrow z_1^5=1 \Rightarrow (i\times z_1)^5=i\times z_1^5=i \Rightarrow (i\times z_1) 是z^5=i的一根\\(B)\bigcirc: z^5=1 \Rightarrow z_k=\cos {2k\pi \over 5} +i\sin{2k\pi \over 5},k=1-4 \\\qquad \Rightarrow |z_k-1| = \sqrt{(\cos {2k\pi \over 5}-1)^2 +\sin^2 {2k\pi \over 5}} =\sqrt{2-2\cos {2k\pi \over 5}} > 1,k=1-4\\(C)\bigcirc: \cases{z_1=e^{2\pi i/5}\\ z_2=e^{4\pi i/5}=z_1^2 \\ z_3= e^{6\pi i/5} =z_1^3\\ z_4=e^{8\pi i/5} =z_1^4} \Rightarrow (z_1+1)(z_2+1)(z_3+1)(z_4+1) = (z_1+1)(z_1^2+1)(z_1^3+1)(z_1^4+1) \\ \qquad ={(z_1-1)(z_1+1)(z_1^2+1)(z_1^3+1)(z_1^4+1)\over z_1-1} ={(z_1^2-1) (z_1^2+1)(z_1^3+1)(z_1^4+1)\over z_1-1} \\\qquad={(z_1^4-1)(z_1^3+1)(z_1^4+1)\over z_1-1} ={(z_1^8-1)(z_1^3+1)\over z_1-1} ={(z_1^3-1)(z_1^3+1)\over z_1-1}(z_1^5=1 \Rightarrow z_1^8=z_1^3) \\\qquad \Rightarrow {z_1^6-1\over z_1-1}={z_1-1\over z_1-1}=1 \\(D)\times: \cases{(2-z_1)^2= 4-4z_1+z_1^2\\ (2-z_2)^2 = (2-z_1^2)^2=4-4z_1^2+z_1^4 \\ (2-z_3)^2 =(z-z_1^3)^2 =4-4z_1^3 +z_1^6 =4+z_1-4z_1^3 \\(2-z_4)^2 =(2-z_1^4)^2 =4-4z_1^4+z_1^8 =4+z_1^3-4z_1^4}\\\qquad \Rightarrow (2-z_1)^2+(2-z_2)^2 +(2-z_3)^2 +(2-z_4)^2 =16-3(z_1+z_1^2+z_1^3 +z_1^4)\\ \qquad =16-3\times(-1)=19\\故選\bbox[red, 2pt]{(ABC)}$$
$$(A)\bigcirc: z^4+z^3+z^2+z+1=0 \Rightarrow (z-1)( z^4+z^3+z^2+z+1) =0 \Rightarrow z^5=1\\ \qquad \Rightarrow z_1^5=1 \Rightarrow (i\times z_1)^5=i\times z_1^5=i \Rightarrow (i\times z_1) 是z^5=i的一根\\(B)\bigcirc: z^5=1 \Rightarrow z_k=\cos {2k\pi \over 5} +i\sin{2k\pi \over 5},k=1-4 \\\qquad \Rightarrow |z_k-1| = \sqrt{(\cos {2k\pi \over 5}-1)^2 +\sin^2 {2k\pi \over 5}} =\sqrt{2-2\cos {2k\pi \over 5}} > 1,k=1-4\\(C)\bigcirc: \cases{z_1=e^{2\pi i/5}\\ z_2=e^{4\pi i/5}=z_1^2 \\ z_3= e^{6\pi i/5} =z_1^3\\ z_4=e^{8\pi i/5} =z_1^4} \Rightarrow (z_1+1)(z_2+1)(z_3+1)(z_4+1) = (z_1+1)(z_1^2+1)(z_1^3+1)(z_1^4+1) \\ \qquad ={(z_1-1)(z_1+1)(z_1^2+1)(z_1^3+1)(z_1^4+1)\over z_1-1} ={(z_1^2-1) (z_1^2+1)(z_1^3+1)(z_1^4+1)\over z_1-1} \\\qquad={(z_1^4-1)(z_1^3+1)(z_1^4+1)\over z_1-1} ={(z_1^8-1)(z_1^3+1)\over z_1-1} ={(z_1^3-1)(z_1^3+1)\over z_1-1}(z_1^5=1 \Rightarrow z_1^8=z_1^3) \\\qquad \Rightarrow {z_1^6-1\over z_1-1}={z_1-1\over z_1-1}=1 \\(D)\times: \cases{(2-z_1)^2= 4-4z_1+z_1^2\\ (2-z_2)^2 = (2-z_1^2)^2=4-4z_1^2+z_1^4 \\ (2-z_3)^2 =(z-z_1^3)^2 =4-4z_1^3 +z_1^6 =4+z_1-4z_1^3 \\(2-z_4)^2 =(2-z_1^4)^2 =4-4z_1^4+z_1^8 =4+z_1^3-4z_1^4}\\\qquad \Rightarrow (2-z_1)^2+(2-z_2)^2 +(2-z_3)^2 +(2-z_4)^2 =16-3(z_1+z_1^2+z_1^3 +z_1^4)\\ \qquad =16-3\times(-1)=19\\故選\bbox[red, 2pt]{(ABC)}$$
第二部分:綜合題(共 60 分)
一、填充題(每題 4 分,共 36 分)
解:
$$a_n = {1\over \sum_{k=1}^n k(k+1)/2} ={1\over {1\over 2}\sum_{k=1}^n (n^2+n)} ={1\over {n(n+1)(2n+1)\over 12}+{n(n+1)\over 4} } ={6\over n(n+1)(n+2) } \\={3\over n}-{6\over n+1} +{3\over n+2} \\ \Rightarrow \begin{array}{}\\\hline a_1 & = & \color{blue}{3\over 1} & \color{blue}{-{6\over 2}} & +{3\over 3} \\ a_2 & = & \color{blue}{3\over 2} & -{6\over 3} & +{3\over 4} \\ a_3 & = & {3\over 3} & -{6\over 4} & +{3\over 5} \\ a_4 & = & {3\over 4} & -{6\over 5} & +{3\over 6} \\ \cdots & \cdots &\cdots \\\hline \end{array} \\ \Rightarrow \sum_{n=1}^\infty a_n = {3\over 1}-{6\over 2}+{3\over 2}+ 0+0+\cdots (對角線上的三項和為0,只留下最左上角的三項)\\= \bbox[red,2pt]{3\over 2}$$
解:
$$\alpha ,\beta,\gamma 為f(x)=x^3-2x^2+3x-4=0之三根\Rightarrow \cases{\alpha+\beta +\gamma=2\\ \alpha\beta+ \beta\gamma + \alpha\gamma =3\\ \alpha\beta\gamma=4} \\ 利用長除法可得g(x)=f(x)(x-1)-x-3 \Rightarrow \cases{g(\alpha)=-\alpha-3 \\g(\beta)=-\beta-3 \\g(\gamma)=-\gamma-3 } \\ \Rightarrow g(\alpha)g(\beta)g(\gamma) = -(\alpha+3)(\beta+3) (\gamma+3) =-(\alpha\beta\gamma +3(\alpha\beta+ \beta\gamma +\gamma\alpha) +9(\alpha+\beta+\gamma)+27) \\ =-(4+9+18+27)= \bbox[red,2pt]{-58}$$
解:
$$由圖形可知:\cases{|-x^2+2x|\ge |x|,0\le x\le 1;\\|-x^2+2x|\le |x|,1\le x\le 3;}\\ \Rightarrow 旋轉體積:兩段曲線旋轉體積再扣除空心部份\\=\int_0^1(-x^2+2x)^2\pi\;dx+\int_1^3(-x)^2\pi\;dx-\int_2^3(-x^2+2x)^2\pi\;dx\\= \int_0^1(x^4-4x^3+4x^2)\pi\; dx+\int_1^3x^2\pi\;dx-\int_2^3(x^4-4x^3+4x^2)\pi;dx\\= \left(\left. \left[ {1\over 5}x^5-x^4+{4\over 3}x^3\right] \right|_0^1+\left. \left[ {1\over 3}x^3\right] \right|_1^3-\left. \left[ {1\over 5}x^5-x^4+{4\over 3}x^3\right] \right|_2^3\right)\pi\\ =\left({8\over 15}+{26\over 3}-{38\over 15} \right)\pi = \bbox[red,2pt]{{20\over 3}\pi}$$
$$a=\sqrt{108+\sqrt{108+\sqrt{108+\cdots}}} \Rightarrow a^2=108+a \Rightarrow a^2-a-108=0 \Rightarrow a={1+\sqrt{433}\over 2} \\ \Rightarrow{1+20\over 2} a < {1+21\over 2} \Rightarrow 10.5 < a < 11\Rightarrow 10=n < a < n+1=11 \Rightarrow n= \bbox[red, 2pt]{10}$$
解:
$$有以下情況:ABCDE,BCADE,BCDAE,BCDEA,BCEDA,BDCAE,BDCEA,BECDA,\\CBADE,CBDAE,CBDEA, CBEDA, DBCEA,DBCAE,EBCDA,共\bbox[red, 2pt]{16}種$$
解:
$$f(x)={|x|\over 1+|x|} =\cases{{x\over 1+x},x\ge 0\\ {-x\over 1-x},x<0} \Rightarrow f'(x)= \cases{{1\over 1+x}-{x\over (1+x)^2 },x\ge 0\\ {-1\over 1-x}-{x\over (1-x)^2},x<0} \\ \Rightarrow \cases{\lim_{x\to 0^+}f'(x)=1 \\\lim_{x\to 0^-}f'(x)=-1} \Rightarrow \bbox[red,2pt]{f'(0)=不存在} \\ \Rightarrow \lim_{x\to 1^+} =\lim_{x\to 1^-} ={1\over 2}-{1\over 4} ={1\over 4} \Rightarrow \bbox[red, 2pt]{f'(1)={1\over 4}}$$
解:
$$此題相當於求四圓聯集的面積,因此需先求兩圓重疊區域的面積;\\\overline{O_1O_2} =\overline{O_1B} =\overline{O_2B} =圓半徑r=2 \Rightarrow \triangle O_1O_2B為一正\triangle \Rightarrow \triangle O_1O_2B面積= {\sqrt 3\over 4}r^2=\sqrt 3\\ 又扇形O_1BO_2為六分之一圓 \Rightarrow 面積={1\over 6}r^2\pi = {2\over 3}\pi \Rightarrow 兩圓重疊區域面積=2\times \sqrt 3+4({2\over 3}\pi-\sqrt 3)\\ ={8\over 3}\pi -2\sqrt 3 \Rightarrow 四圓聯集面積=4\times 2^2\pi- 2({8\over 3}\pi -2\sqrt 3) =\bbox[red, 2pt]{{32\over 3}\pi+4\sqrt 3}$$
$$a_1=3\\a_2=2\cdot 3+4\\ a_3=2^2\cdot 3+2\cdot 4+4^2\\ a_4=2^3\cdot 3+2^2\cdot 4+2\cdot 4^2+4^3\\\cdots \cdots \cdots\\ a_n= 2^{n-1}\cdot 3+2^{n-2}\cdot 4+\cdots + 2^{n-k}4^{k-1}+\cdots +4^{n-1}=2^{n-1}\cdot 3+ \sum_{k=2}^n 2^{n-k}4^{k-1} \\ =2^{n-1}\cdot 3+ \sum_{k=2}^n 2^{n-k}2^{2k-2} =2^{n-1}\cdot 3+ \sum_{k=2}^n 2^{n+k-2}=2^{n-1}\cdot 3+2^{2n-1}-2^n \\ =2^{n-1}(3-2)+2^{2n-1} =2^{n-1}+2^{2n-1} ={2^n\over 2}+{2^{2n}\over 2} =\bbox[red,2pt]{{1\over 2}(2^n+4^n)}$$
二、計算證明題(每題 8 分,共 24 分)
解:
(1)$$令S(n)=\sum_{k=1}^n a_k = a_1+a_2+\cdots+a_n \Rightarrow a_n=S(n)-S(n-1);\\ \sum_{k=1}^\infty a_k\;收斂 \Rightarrow \lim_{n\to \infty}S(n)= L < \infty \\\Rightarrow \lim_{n\to \infty} a_n =\lim_{n\to \infty} S(n)-\lim_{n\to \infty}S(n-1)= L-L=0\\ \Rightarrow \lim_{n\to \infty} a_n =0,故得證$$(2)$$不成立\\例如a_n={1\over n} \Rightarrow \lim_{n\to \infty}a_n=0;\\但S(2^n)={1\over 2 }+{1\over 2^2 }+{1\over 2^3 }+ \cdots {1\over 2^n } >{1\over 2 }+2\cdot{1\over 2^2 }+2^2\cdot{1\over 2^3 }+ \cdots 2^{n-1}\cdot{1\over 2^n } ={n\over 2}\\ \Rightarrow \lim_{n\to\infty} S(n) >\lim_{n\to\infty} {n\over 2} =\infty \Rightarrow S(n)發散$$
2.設\((1+x+x^2)^n=a_0 +a_1x+\cdots+a_{2n}x^{2n}\),其中\(a_0,a_1,\cdots\)為係數,\(n\in N\)。
證明:\(a_0+a_3+a_6+\cdots= a_1+a_4+a_7+\cdots= a_2+a_5+a_8+\cdots= 3^{n-1}\)
解:
$$令\omega及\omega^2為1+x+x^2=0的兩根,即\omega= e^{2\pi i/3},\omega^2= e^{4\pi i/3}, \omega^3= 1\Rightarrow \cases{\omega^{3n}=1 \\ \omega^{3n+1}=\omega \\\omega^{3n+2}=\omega^2},n\in N\\ 令f(x)=(1+x+x^2)^n = a_0+a_1x +\cdots +a_{2n}x^{2n} \Rightarrow f(0)=1=a_0\\ \Rightarrow \cases{f(1)=3^n =a_0+a_1+\cdots +a_{2n}\cdots(1)\\ f(\omega)=0= a_0+a_1\omega+a_2\omega^2+\cdots +a_{2n}\omega^{2n}\cdots (2) \\ f(\omega^2)=0=a_0+a_1\omega^2+a_2\omega^4 +\cdots +a_{2n}\omega^{4n} \cdots(3)} \Rightarrow (1)+(2)+(3) \\\Rightarrow 3^n = 3a_0 +a_1(1+\omega+\omega^2) +a_2(1+\omega^2+\omega^4) +a_3(1+\omega^3+\omega^6) +\cdots +a_{2n}(1+\omega^{2n} +\omega^{4n}) \\ \qquad= 3a_0+0\cdot a_1 +0\cdot a_2+3a_3+0\cdot a_4+0\cdot a_5+3a_6 \cdots \\\qquad = 3(a_0+a_3+a_6+\cdots)\\ \Rightarrow a_0+a_3+a_6+\cdots=3^{n-1} \cdots(4)\\ 令g(x)={f(x)-a_0\over x} ={f(x)-1\over x} =a_1+a_2x+a_3x^2 +\cdots +a_{2n}x^{2n-1}\\ \Rightarrow \cases{g(1)=3^n-1=a_1+a_2+\cdots +a_{2n}\cdots(5) \\ g(\omega)={-1\over \omega} =a_1+a_2\omega+a_3\omega^2 +\cdots +a_{2n}\omega^{2n-1}\cdots(6) \\g(\omega^2)={-1\over \omega^2} =a_1+a_2\omega^2+a_3 \omega^4+ \cdots+ a_{2n}\omega^{4n-2} \cdots(7)} \Rightarrow (5)+(6)+(7) \\ \Rightarrow 3^n-(1+{1\over \omega} +{1\over \omega^2}) =3^n-({\omega^2+\omega +1\over \omega^2}) =3^n =3(a_1+a_4+a_7+\cdots)\\ \Rightarrow a_1+a_4+a_7+\cdots=3^{n-1}\cdots( 8)\\ 由(1)-(4)-(8)\Rightarrow a_2+a_5+a_8+\cdots =3^n-3^{n-1}-3^{n-1}=3^{n-1}\cdots(9)\\由(4),(8)及(9)可得: a_0+a_3+a_6+\cdots= a_1+a_4+a_7+\cdots= a_2+a_5+a_8+\cdots= 3^{n-1}$$
-- END (僅供參考) --
你好:請問第一部分的第5題,x的4次方=16i,4次方程式不是只有4個根?為什麼會有6個非實數根呢?謝謝
回覆刪除原解有點囉唆,修訂後希望比較清楚,謝謝提醒!
刪除感謝你囉!
回覆刪除您好,想請問單選第二題題目是否有誤。
回覆刪除n+4/n-2=1/2 的解為n=-10而非n=8
並且將n=8帶回原式驗算也得不到題目要求的比值為-1
n=-10或n=8 都符合(n+4)/(n-2)=1/2,所以選(C)
刪除第一題的D選項是否是在第一象限呢?(實部、虛部都為正)
回覆刪除對!, 應該是第一象限
刪除