新北市立高級中等學校104學年度教師聯合甄選
一、選擇題
解答:令A、B均為S的非空且互斥的子集合,並令C=S−A−B;對任一元素x∈S,x一定在A、B、C其中之一;也就是每個元素有3種選擇,共有310種;但A、B均非空,需扣除A=∅,或B=∅的情形,即310−2×210+1(1代表A=B=∅)=59049−2×1024+1=57002⇒m=57002÷2(A、B對調)=28501⇒{a=8b=5c=0d=1⇒a+b+c+d=14,故選(A)解答:(A)×:沒有最大的質數(B)×:7663=79×97(C)×:若p,p+2的最大公因數是k,k>1;由於p是質數,因此k≥p⇒k=p或p+1⇒(p+2)/k<2⇒gcd(k,p+2)=1⇒k與p+2互質,矛盾!故選(D)
解答:兩交點{P(x1,y1)Q(x2,y2)對稱於直線y=x⇒{P(x1,y1)Q(y1,x1);又P、Q皆在直線y=kx+1上⇒{y1=kx1+1x1=ky1+1⇒y1−x1=k(x1−y1)⇒k=−1將直線y=−x+1代入曲線x2+y2−x−y=4⇒x2+(−x+1)2−x+x−1=4⇒x2−x−2=0⇒(x−2)(x+1)=0⇒x=2,−1⇒{P(2,−1)Q(−1,2)⇒x1+y1+x2+y2=2−1−1+2=2,故選(C)
解答:f(x)=24x24+23∑k=1(24−k)(x24−k+x24+k)=x+2x2+⋯+23x23+24x24+23x25+⋯+2x46+x47⇒xf(x)=x2+2x3+⋯+23x24+24x25+23x26+⋯+2x47+x48⇒f(x)−xf(x)=x+x2+⋯+x24−(x25+x26+⋯+x47+x48)=x+x2+⋯+x24−x24(x+x2+⋯+x24)=(1−x24)(x+x2+⋯+x24)⇒f(x)=x(1−x24)(1+x+⋯+x23)1−x=x(1−x)(1+x+⋯+x23)(1+x+⋯+x23)1−x=x(1−x23)2⇒f(x)=0的相異根為0及zk=eikπ/12,k=1−23⇒z2k=eikπ/6,k=1−23⇒Im(z2k)=sinkπ6,k=1−23⇒23∑k=1|sinkπ6|=45∑k=1sinkπ6=4(12+√32+1+√32+12)=8+4√3⇒m+n+p=8+4+3=15,故選(B)
解答:
A為切點⇒∠OAB=90∘⇒tanθ=¯AB¯OA=¯AB令{¯OC=a∠OBC=∠CBA=α⇒{tan2α=1/¯AB=1/tanθtanα=(1−a)/¯AB=(1−a)/tanθ⇒tan2α=2tanα1−tan2α⇒1tanθ=2(1−a)/tanθ1−(1−a)2/tan2θ⇒1−a=−tan2θ+tanθsecθ⇒a=1+tan2θ−tanθsecθ=1+sin2θcos2θ−sinθcos2θ=cos2θ+sinθ−sinθcos2θ=1−sinθ1−sin2θ=1−sinθ(1+sinθ)(1−sinθ)=11+sinθ,故選(C)
二、填充題
解答:令正方形邊長為a⇒{cos∠PBA=a2+52−722⋅5⋅a=a2−2410acos∠PBC=a2+52−122⋅5⋅a=a2+2410a由於∠PBA+∠PBC=90∘,cos∠PBC=sin∠PBA⇒(a2−2410a)2+(a2+2410a)2=1⇒(a2−24)2+(a2+24)2=100a2⇒a4−50a2+242=0⇒a2=25±7⇒正方形面積=a2=32(a2=25−7=18⇒a=3√2⇒對角線¯AC=6≯7=¯PA)
解答:拋物線Γ:y=x2+(a+1)x+b過(3,3)⇒3=9+3(a+1)+b⇒b=−9−3a又y≥x⇒x2+(a+1)x+b≥x⇒x2+ax+b≥0⇒判別式a2−4b≤0⇒a2+4(9+3a)≤0⇒a2+12a+36≤0⇒(a+6)2≤0⇒a=−6⇒b=−9−3(−6)=9⇒Γ:y=x2−5x+9=(x−52)2+114⇒頂點(52,114)至原點的距離=√254+12116=√2214
解答:令g(x,y)=x+2y−2及f(x,y)=λg(x,y)⇒{∂∂xf=λ∂∂xg∂∂yf=λ∂∂yg⇒{2xy=λx2=2λ⇒x2=4xy⇒x(x−4y)=0⇒{x=0x=4y代入g(x,y)=0⇒(x,y)={(0,1)(4/3,1/3)⇒{f(0,1)=0最小值f(4/3,1/3)=16/27最大值⇒最大值+最小值=1627
解答:令{a=3√2+√αb=3√2−√αx=a+b∈N⇒{a3+b3=4ab=3√4−α<3√4(∵α>0)又(a+b)3=a3+b3+3ab(a+b)⇒x3=4+3abx⇒ab=x3−43x=x23−43x<3√4⇒x=1,2⇒{x=1⇒ab=−1=3√4−α⇒α=5x=2⇒ab=2/3=3√4−α⇒α=100/27⇒α=5或10027
解答:sin(6π/16)sin(2π/16)=sin(6π/16)cos(2π/16)sin(2π/16)cos(2π/16)=sin(π/2)+sin(π/4)sin(π/4)=1+1/√21/√2=√2+1⇒{a=sin(6π/16)sin(2π/16)b=sin(7π/16)sin(3π/16)c=sin(5π/16)sin(1π/16)⇒c−a=sin(2π/16)sin(5π/16)−sin(6π/16)sin(π/16)sin(π/16)sin(2π/16)⇒c−a的分子=12(cos(3π/16)−cos(7π/16))−12(cos(5π/16)−cos7π/16))=12(cos3π/16)−cos(5π/16))>0⇒c>a⋯(1)同理,a−b的分子=sin(6π/16)sin(3π/16)−sin(2π/16)sin(7π/16)=12(cos(3π/16)−cos(9π/16))−12(cos(5π/15)−cos(9π/16))=12(cos(3π/16)−cos(5π/16))>0⇒a>b⋯(2)由(1)及(2)得c>a>b
解答:由題意可知:{n個根之和=a=2nn個根之積=2n⇒所有的根皆為2⇒b={n×2n−1,n是奇數−n×2n−1,n是偶數=n×(−2)n−1
解答:令f(x)=cosx,則{π/4≈0.7853/5=0.6π/6≈0.524⇒f(3/5)=(35−π6)f(π4)+(π4−35)f(π6)π4−π6≈((0.6−0.52)×0.707+(0.78−0.6)×0.866)×3.82≈0.812⇒n=8
解答:
解答:令g(x,y)=x+2y−2及f(x,y)=λg(x,y)⇒{∂∂xf=λ∂∂xg∂∂yf=λ∂∂yg⇒{2xy=λx2=2λ⇒x2=4xy⇒x(x−4y)=0⇒{x=0x=4y代入g(x,y)=0⇒(x,y)={(0,1)(4/3,1/3)⇒{f(0,1)=0最小值f(4/3,1/3)=16/27最大值⇒最大值+最小值=1627
解答:令{a=3√2+√αb=3√2−√αx=a+b∈N⇒{a3+b3=4ab=3√4−α<3√4(∵α>0)又(a+b)3=a3+b3+3ab(a+b)⇒x3=4+3abx⇒ab=x3−43x=x23−43x<3√4⇒x=1,2⇒{x=1⇒ab=−1=3√4−α⇒α=5x=2⇒ab=2/3=3√4−α⇒α=100/27⇒α=5或10027
解答:sin(6π/16)sin(2π/16)=sin(6π/16)cos(2π/16)sin(2π/16)cos(2π/16)=sin(π/2)+sin(π/4)sin(π/4)=1+1/√21/√2=√2+1⇒{a=sin(6π/16)sin(2π/16)b=sin(7π/16)sin(3π/16)c=sin(5π/16)sin(1π/16)⇒c−a=sin(2π/16)sin(5π/16)−sin(6π/16)sin(π/16)sin(π/16)sin(2π/16)⇒c−a的分子=12(cos(3π/16)−cos(7π/16))−12(cos(5π/16)−cos7π/16))=12(cos3π/16)−cos(5π/16))>0⇒c>a⋯(1)同理,a−b的分子=sin(6π/16)sin(3π/16)−sin(2π/16)sin(7π/16)=12(cos(3π/16)−cos(9π/16))−12(cos(5π/15)−cos(9π/16))=12(cos(3π/16)−cos(5π/16))>0⇒a>b⋯(2)由(1)及(2)得c>a>b
解答:由題意可知:{n個根之和=a=2nn個根之積=2n⇒所有的根皆為2⇒b={n×2n−1,n是奇數−n×2n−1,n是偶數=n×(−2)n−1
解答:令f(x)=cosx,則{π/4≈0.7853/5=0.6π/6≈0.524⇒f(3/5)=(35−π6)f(π4)+(π4−35)f(π6)π4−π6≈((0.6−0.52)×0.707+(0.78−0.6)×0.866)×3.82≈0.812⇒n=8
解答:
令△ABC邊長分為x,y,z及其邊長上的高分別為{hx=1/7hy=1/8hz=1/9(見上圖),則x,y,z符合題意要求;△ABC面積=12⋅x7=12⋅y8=12⋅z9⇒x:y:z=7:8:9⇒{x=7ky=8kz=9k令s=(x+y+z)÷2=12k⇒△ABC面積=√s(s−x)(s−y)(s−z)=√12k⋅5k⋅4k⋅3k=12√5k2=12⋅x7=k2⇒k=124√5⇒x+y+z=24k=1√5
解答:A=[5−34−2]⇒det(A−λI)=0⇒(λ−1)(λ−2)=0λ1=1⇒(A−λ1I)X=0⇒[4−34−3][x1x2]=0⇒4x1=3x2,取→u=[34]及→v=[4−3]⇒U=(→n1=→u|→u|,→n2=→v|→v|)=[3/54/54/5−3/5]⇒A→n1=→n1及A→n2=[5−34−2][4/5−3/5]=[29/522/5]=7→n1+2→n2⇒AU=A(→n1→n2)=[→n1→n2][1702]⇒{U=[3/54/54/5−3/5]T=[1702]或λ2=2⇒(A−λ2I)X=0⇒[3−34−4][x1x2]=0⇒x1=x2,取→u=[11]及→v=[1−1]⇒U=(→n1=→u|→u|,→n2=→v|→v|)=[1/√21/√21/√2−1/√2]⇒A→n1=2→n1及A→n2=[5−34−2][1/√2−1/√2]=[8/√26/√2]=7→n1+→n2⇒AU=A(→n1→n2)=[→n1→n2][2701]⇒{U=[1/√21/√21/√2−1/√2]T=[2701]答案不是唯一,上述兩組答案都對,學校公布的答案是後者。
解答:x5+x4+4x3+7x3+9x+18=(x3+ax2+bx+c)(x2+dx+e),a,b,c,d,e∈Z⇒{a+d=1e+ad+b=4ae+bd+c=7be+cd=9ec=18,取a=0⇒{d=1b+e=4b+c=7be+c=9ec=18,由{c−e=3ce=18⇒{c=6e=3⇒{a=0b=1c=6d=1e=3⇒(x3+x+6)(x2+x+3)
================================ END ============================
解答:x5+x4+4x3+7x3+9x+18=(x3+ax2+bx+c)(x2+dx+e),a,b,c,d,e∈Z⇒{a+d=1e+ad+b=4ae+bd+c=7be+cd=9ec=18,取a=0⇒{d=1b+e=4b+c=7be+c=9ec=18,由{c−e=3ce=18⇒{c=6e=3⇒{a=0b=1c=6d=1e=3⇒(x3+x+6)(x2+x+3)
================================ END ============================
解題僅供參考,其他教甄試題及詳解
沒有留言:
張貼留言