Loading [MathJax]/jax/output/HTML-CSS/jax.js

2021年7月3日 星期六

104年新北市高中教甄聯招-數學詳解

新北市立高級中等學校104學年度教師聯合甄選

一、選擇題

解答ABSC=SABxSxABC3310ABA=B=3102×210+1(1A=B=)=590492×1024+1=57002m=57002÷2(AB調)=28501{a=8b=5c=0d=1a+b+c+d=14(A)
解答(A)×:(B)×:7663=79×97(C)×:p,p+2k,k>1pkpk=pp+1(p+2)/k<2gcd(k,p+2)=1kp+2!(D)
解答{P(x1,y1)Q(x2,y2)y=x{P(x1,y1)Q(y1,x1);PQy=kx+1{y1=kx1+1x1=ky1+1y1x1=k(x1y1)k=1y=x+1x2+y2xy=4x2+(x+1)2x+x1=4x2x2=0(x2)(x+1)=0x=2,1{P(2,1)Q(1,2)x1+y1+x2+y2=211+2=2(C)
解答f(x)=24x24+23k=1(24k)(x24k+x24+k)=x+2x2++23x23+24x24+23x25++2x46+x47xf(x)=x2+2x3++23x24+24x25+23x26++2x47+x48f(x)xf(x)=x+x2++x24(x25+x26++x47+x48)=x+x2++x24x24(x+x2++x24)=(1x24)(x+x2++x24)f(x)=x(1x24)(1+x++x23)1x=x(1x)(1+x++x23)(1+x++x23)1x=x(1x23)2f(x)=00zk=eikπ/12,k=123z2k=eikπ/6,k=123Im(z2k)=sinkπ6,k=12323k=1|sinkπ6|=45k=1sinkπ6=4(12+32+1+32+12)=8+43m+n+p=8+4+3=15(B)
解答

AOAB=90tanθ=¯AB¯OA=¯AB{¯OC=aOBC=CBA=α{tan2α=1/¯AB=1/tanθtanα=(1a)/¯AB=(1a)/tanθtan2α=2tanα1tan2α1tanθ=2(1a)/tanθ1(1a)2/tan2θ1a=tan2θ+tanθsecθa=1+tan2θtanθsecθ=1+sin2θcos2θsinθcos2θ=cos2θ+sinθsinθcos2θ=1sinθ1sin2θ=1sinθ(1+sinθ)(1sinθ)=11+sinθ,(C)

二、填充題

解答
a{cosPBA=a2+527225a=a22410acosPBC=a2+521225a=a2+2410aPBA+PBC=90cosPBC=sinPBA(a22410a)2+(a2+2410a)2=1(a224)2+(a2+24)2=100a2a450a2+242=0a2=25±7=a2=32(a2=257=18a=32¯AC=67=¯PA)
解答Γ:y=x2+(a+1)x+b(3,3)3=9+3(a+1)+bb=93ayxx2+(a+1)x+bxx2+ax+b0a24b0a2+4(9+3a)0a2+12a+360(a+6)20a=6b=93(6)=9Γ:y=x25x+9=(x52)2+114(52,114)=254+12116=2214
解答g(x,y)=x+2y2f(x,y)=λg(x,y){xf=λxgyf=λyg{2xy=λx2=2λx2=4xyx(x4y)=0{x=0x=4yg(x,y)=0(x,y)={(0,1)(4/3,1/3){f(0,1)=0f(4/3,1/3)=16/27+=1627
解答{a=32+αb=32αx=a+bN{a3+b3=4ab=34α<34(α>0)(a+b)3=a3+b3+3ab(a+b)x3=4+3abxab=x343x=x2343x<34x=1,2{x=1ab=1=34αα=5x=2ab=2/3=34αα=100/27α=510027
解答sin(6π/16)sin(2π/16)=sin(6π/16)cos(2π/16)sin(2π/16)cos(2π/16)=sin(π/2)+sin(π/4)sin(π/4)=1+1/21/2=2+1{a=sin(6π/16)sin(2π/16)b=sin(7π/16)sin(3π/16)c=sin(5π/16)sin(1π/16)ca=sin(2π/16)sin(5π/16)sin(6π/16)sin(π/16)sin(π/16)sin(2π/16)ca=12(cos(3π/16)cos(7π/16))12(cos(5π/16)cos7π/16))=12(cos3π/16)cos(5π/16))>0c>a(1)ab=sin(6π/16)sin(3π/16)sin(2π/16)sin(7π/16)=12(cos(3π/16)cos(9π/16))12(cos(5π/15)cos(9π/16))=12(cos(3π/16)cos(5π/16))>0a>b(2)(1)(2)c>a>b
解答:{n=a=2nn=2n2b={n×2n1,nn×2n1,n=n×(2)n1
解答f(x)=cosx{π/40.7853/5=0.6π/60.524f(3/5)=(35π6)f(π4)+(π435)f(π6)π4π6((0.60.52)×0.707+(0.780.6)×0.866)×3.820.812n=8
解答

ABCx,y,z{hx=1/7hy=1/8hz=1/9()x,y,zABC=12x7=12y8=12z9x:y:z=7:8:9{x=7ky=8kz=9ks=(x+y+z)÷2=12kABC=s(sx)(sy)(sz)=12k5k4k3k=125k2=12x7=k2k=1245x+y+z=24k=15
解答A=[5342]det(AλI)=0(λ1)(λ2)=0λ1=1(Aλ1I)X=0[4343][x1x2]=04x1=3x2u=[34]v=[43]U=(n1=u|u|,n2=v|v|)=[3/54/54/53/5]An1=n1An2=[5342][4/53/5]=[29/522/5]=7n1+2n2AU=A(n1n2)=[n1n2][1702]{U=[3/54/54/53/5]T=[1702]λ2=2(Aλ2I)X=0[3344][x1x2]=0x1=x2u=[11]v=[11]U=(n1=u|u|,n2=v|v|)=[1/21/21/21/2]An1=2n1An2=[5342][1/21/2]=[8/26/2]=7n1+n2AU=A(n1n2)=[n1n2][2701]{U=[1/21/21/21/2]T=[2701]答案不是唯一,上述兩組答案都對,學校公布的答案是後者。
解答x5+x4+4x3+7x3+9x+18=(x3+ax2+bx+c)(x2+dx+e),a,b,c,d,eZ{a+d=1e+ad+b=4ae+bd+c=7be+cd=9ec=18a=0{d=1b+e=4b+c=7be+c=9ec=18{ce=3ce=18{c=6e=3{a=0b=1c=6d=1e=3(x3+x+6)(x2+x+3)
================================ END ============================
解題僅供參考,其他教甄試題及詳解 

沒有留言:

張貼留言