教育部受託辦理110學年度公立高級中等學校教師甄選
第一部分:選擇題( 共40分)
一、單選題( 每題3分, 共24分)
解答:$$\cases{n=10\\ k=3}代入公式{(k-1)((k-1)^{n-1}+(-1)^n)\over k} ={2(2^9+1)\over 3}=342,故選\bbox[red,2pt]{(C)}$$
解答:
$$此題相當於求兩圖形\cases{\Gamma_1:y=\log_4 x\\ \Gamma_2: y=|\cos x|+\cos x}的交點數;\\由於y=\log_4 x \Rightarrow x\gt 0,又\;2\ge |\cos x|+\cos x \ge 0,因此只需考慮第一象限的交點;\\|\cos x|+\cos x的最大值為2 \Rightarrow \log_4 x=2 \Rightarrow x=16 \approx 5.1\pi ; \\若{\pi\over 2}+2k\pi\le x\le {3\pi\over 2}+2k\pi,k\in \mathbb{Z} \Rightarrow |\cos x|+\cos x=0;\\因此交點落在0\lt x\lt 5.1\pi 且x\not \in [{\pi\over 2}+2k\pi, {3\pi\over 2}+2k\pi],即\cases{x\in (0,{\pi/2})有1交點\\ x\in [3\pi/2,5\pi/2] 有2交點\\ x\in [7\pi/2,9\pi/2] 有2交點} \\ \Rightarrow 共有5個交點,故選\bbox[red,2pt]{(C)}$$
解答:$$A=\begin{bmatrix} -5& -4\\ 9 & 7\end{bmatrix} \Rightarrow A-I=\begin{bmatrix} -6& -4\\ 9 & 6\end{bmatrix} \Rightarrow (A-I)^2 =\begin{bmatrix} -6& -4\\ 9 & 6\end{bmatrix}\begin{bmatrix} -6& -4\\ 9 & 6\end{bmatrix}=0\\ \text{由Cayley-Hamilton 定理} \Rightarrow A^{50}=q(A)(A-I)^2+ c_1A+ c_0I,即t^{50}=q(t)(t-1)^2+c_1t+c_0\cdots(1)\\ \Rightarrow 50t^{49} =q'(t)(t-1)^2+2q(t)(t-1)+c_1 \cdots(2)\\ 將t=1代入(1)及(2) \Rightarrow \cases{1=c_1+c_0\\ 50=c_1} \Rightarrow \cases{c_0=-49\\ c_1=50} \Rightarrow A^{50}=50A-49I \\同理可得:A^n=nA-(n-1)I =\begin{bmatrix} -5n & -4n\\ 9n & 7n\end{bmatrix} -\begin{bmatrix}n-1& 0\\ 0 & n-1\end{bmatrix} =\begin{bmatrix} -6n+1 & -4n\\ 9n & 6n+1\end{bmatrix} \\ 又A^n-A^{n-1}=nA-(n-1)I-(n-1)A+(n-2)I=A-I\\ 因此原式(A^{51}-A^{50}) +A^3-3A^2-2A+4I =(A-I)+3A-2I-3(2A-I)-2A+4I\\ =-4A+4I=-4(A-I)=-4\begin{bmatrix} -6& -4\\ 9 & 6\end{bmatrix}=\begin{bmatrix} 24& 16\\ -36 & -24\end{bmatrix},故選\bbox[red,2pt]{(A)}$$
解答:$$取\cases{A(1,1,0)\\ B(1,0,1)\\ C(0,1,1) \\ D(0,0,0)},則ABCD為邊長\sqrt 2的正四面體且平面ABD:x-y-z=0;\\ P=(A+B+C+D)/4=(1/2,1/2,1/2) \Rightarrow d_1=d(P,\triangle ABD)={1/2\over \sqrt 3}\\ d_1^2+d_2^2 +d_3^2+d_4^2 =4\times d_1^2={1\over 3},故選\bbox[red,2pt]{(C)}$$
解答:$$取\cases{A(1,1,0)\\ B(1,0,1)\\ C(0,1,1) \\ D(0,0,0)},則ABCD為正四面體;\\另由\cases{\overline{AE}=\overline{AB}/4\\ \overline{CF}= \overline{CD}/4} \Rightarrow \cases{E=(3A+B)/4 =(1,3/4,1/4)\\ F=(3C+D)/4 =(0,3/4,3/4)}\\ \Rightarrow \cases{\vec u=\overrightarrow{DE} =(1,3/4,1/4) \\ \vec v=\overrightarrow{BF} =(-1,3/4,-1/4)} \Rightarrow \cos \theta ={\vec u\cdot \vec v\over |\vec u||\vec v|} ={-1/2 \over 13/8} =-{4\over 13} \Rightarrow \sin \theta= {\sqrt{153}\over 13}\\,故選\bbox[red,2pt]{(D)}$$
解答:
解答:$$取\cases{A(1,1,0)\\ B(1,0,1)\\ C(0,1,1) \\ D(0,0,0)},則ABCD為邊長\sqrt 2的正四面體且平面ABD:x-y-z=0;\\ P=(A+B+C+D)/4=(1/2,1/2,1/2) \Rightarrow d_1=d(P,\triangle ABD)={1/2\over \sqrt 3}\\ d_1^2+d_2^2 +d_3^2+d_4^2 =4\times d_1^2={1\over 3},故選\bbox[red,2pt]{(C)}$$
解答:$$取\cases{A(1,1,0)\\ B(1,0,1)\\ C(0,1,1) \\ D(0,0,0)},則ABCD為正四面體;\\另由\cases{\overline{AE}=\overline{AB}/4\\ \overline{CF}= \overline{CD}/4} \Rightarrow \cases{E=(3A+B)/4 =(1,3/4,1/4)\\ F=(3C+D)/4 =(0,3/4,3/4)}\\ \Rightarrow \cases{\vec u=\overrightarrow{DE} =(1,3/4,1/4) \\ \vec v=\overrightarrow{BF} =(-1,3/4,-1/4)} \Rightarrow \cos \theta ={\vec u\cdot \vec v\over |\vec u||\vec v|} ={-1/2 \over 13/8} =-{4\over 13} \Rightarrow \sin \theta= {\sqrt{153}\over 13}\\,故選\bbox[red,2pt]{(D)}$$
解答:
$$該圖形為兩個相同的三角錐,底面積為邊長1的正三角形,角錐高為{\sqrt 3\over 2}\\ 因此體積=2\times \left({\sqrt 3\over 4}\times {\sqrt 3\over 2} \times {1\over 3}\right) = {1\over 4},故選\bbox[red,2pt]{(B)}$$
解答:
$$由上圖可知機率為1/2,故選\bbox[red,2pt]{(A)}$$
二、 複選題( 全對才給分, 每題4分,共16分)
解答:$$(1,2,3)及(0,0,0)皆為\Gamma的解\Rightarrow \Gamma 有無限多組解 \Rightarrow \triangle =\begin{vmatrix}a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}=0;\\又(3,2,1)為\Gamma'的解且\triangle=0 \Rightarrow \Gamma'有無限多組解;\\\cases{(1,2,3)為\Gamma 的解\\ (3,2,1)為\Gamma' 的解} \quad \Rightarrow \cases{a_i+2b_i+3c_i=0 \cdots(1) \\ 3a_i+2b_i+c_i=d_i \cdots(2)}\\(A)\times: (0,0,0)為\Gamma' 的解\Rightarrow d_i=0 \Rightarrow \Gamma=\Gamma' ,因此(1)+(2)\Rightarrow a_i+b_i+c_i=0 \\\qquad \Rightarrow 直線:x=y=z為其解 , 但(1,2,3),(3,2,1)不在該直線上,即三平面重疊\\\qquad,違反(a_1,b_1,c_1),(a_2,b_2,c_2)不平行\\ (B)\bigcirc: (1)+(2)\Rightarrow 4a_i+4b_i+4c_i=d_i \Rightarrow (4,4,4)為\Gamma' 的解\\ (C)\bigcirc: (2)-(1)\Rightarrow 2a_i-2c_i=d_i \Rightarrow (2,0,-2)為\Gamma' 的解\\ (D)\bigcirc: 7\times(1)+(2) \Rightarrow 10a_i+16b_i+22c_i=d_i \Rightarrow (10,16,22)為\Gamma' 的解\\,故選\bbox[red,2pt]{(BCD)}$$解答:$$(A)\bigcirc: y=f(x)=x^3-3x^2+4x-k \Rightarrow f'(x)=3x^2-6x+4= 3(x-1)^2 +1 \gt 0\\ \qquad \Rightarrow f(x)為嚴格遞增 \Rightarrow 圖形y=f(x)與水平線只有一個交點\\(B)\times: f'(x) \gt 0,無極值、無水平切線\\ (C)\times: 圖形由左下至右上,無最高與最低點\\(D)\bigcirc: (m,n)在圖形上\Rightarrow n=f(m)\Rightarrow n=m^3-3m^2+4m-k \cdots(1);\\\qquad f(2-m)=(2-m)^3-3(2-m)+4(2-m)-k = -m^3+3m^2-4m+4-k =-n+4-2k\\ \qquad \Rightarrow f(2-m)=(4-n-2k) \Rightarrow (2-m,4-n-2k)也在圖形上\\,故選\bbox[red,2pt]{(AD)}$$
解答:$$(A)\bigcirc: \sigma(z)= \sigma({1\over a}y+b) ={1\over a}\sigma(y) = {1\over a}\sigma(ax+b) =\sigma(x) \Rightarrow \sigma(z)=\sigma(x)\\ (B)\times: \cases{48 ={1\over a}y+b = {1\over a}(ax+b)+b=x+ {b\over a}+b=12+ {b\over a}+b \cdots(1)\\ 55=ax +b=28a+b \Rightarrow b=55-28a \cdots(2)} ,將(2)代入(1)\\ \qquad \Rightarrow 36={1\over a}(55-28a)+ (55-28a) \Rightarrow (4a-5)(7a+11)=0 \Rightarrow a=5/4 \Rightarrow b=20\\ \qquad \Rightarrow 小華第1次調整後的分數=12\times {5\over 4}+20=35 \ne 36\\(C)\bigcirc: ab={5\over 4}\times 20=25 \\ (D)\bigcirc: 100={4\over 5}y+20 \Rightarrow y=100 \Rightarrow 最高分第1次調分後與第2次調分後都是100分\\,故選\bbox[red,2pt]{(ACD)}$$
解答:$$令\cases{A(\sqrt 2,2,0)\\ B(-\sqrt 2,2,0) \\ C(-\sqrt 2,-2,0) \\ D(\sqrt 2,-2,0)} \Rightarrow \cases{ \overline{AB}=\overline{CD} =2\sqrt 2 \\\overline{AD} =\overline{BC}=4\\ \overline{AC}=\overline{BD}= 2\sqrt 6} \Rightarrow \cases{A、B相鄰,C、D相鄰\\ A、D正方形對角,B、C正方形對角\\ A、C立方體對角,B、D立方體對角}\\ 又A、B、C、D均在z=0的平面上,因此剩下的四點在z=\pm 2 上,因此選項(B)與(C)是錯的;\\令\cases{P(\sqrt 2,0,2)\\ Q(-\sqrt 2,0,-2)} \Rightarrow \cases{\overline{AP} =\overline{PD}=2\sqrt 2\\ \overline{BQ}=\overline{CQ}=2\sqrt 2} \Rightarrow \cases{P與A、D皆相鄰\\ Q與B、C皆相鄰}\qquad,故選\bbox[red,2pt]{(AD)}$$
第二部分: 綜合題( 共60分)
一、 填充題(每題4分,共36分)
解答:$$2\times 9^x-(m+1)3^x+m+1=0 有相異實根\Rightarrow 判別式\gt 0 \Rightarrow (m+1)^2-8(m+1) \gt 0\\ \Rightarrow (m+1)(m-7) \gt 0 \Rightarrow m\gt 7 或m\lt -1\cdots(1);\\由於3^x \gt 0 \Rightarrow 兩根之積{1\over 2}(m+1) \gt 0 \Rightarrow m\gt -1 \cdots(2);\\ 由(1)及(2)可知: \bbox[red,2pt]{m\gt 7}$$解答:$$(n^2-2n-2)^{n^2+47} =(n^2-2n-2)^{16n-16} \Rightarrow \cases{n^2+47=16n-16\\ n^2-2n-2=1}\\ \Rightarrow \cases{(n-9)(n-7)=0 \\ (n-3)(n+1)=0} \Rightarrow n=3,7,9 \Rightarrow 3+7+9= \bbox[red,2pt]{19}$$
解答:$$\int_0^3 x^2\lfloor x\rfloor\;dx = \int_0^1 0\;dx +\int_1^2 x^2 ;dx + \int_2^3 2x^2 \;dx = 0+{1\over 3}\cdot 7 +{2\over 3}\cdot 19 ={45\over 3}= \bbox[red,2pt]{15}$$
解答:
$$令\cases{A(0,0)\\ B(10,0)\\C(10,10)\\ D(0,10)} \Rightarrow M=(A+B)/2=(5,0) \Rightarrow \overleftrightarrow{DM}: y=-2x+10\\ 又A、E對稱於\overleftrightarrow{DM} \Rightarrow E(8,4) \Rightarrow \triangle BCE={1\over 2} \times 10\times 2= \bbox[red,2pt]{10}$$
解答:$$\cases{\tan \alpha_1=1 \\ \tan \alpha_2=1/2\\ \tan \alpha_3=1/3 \\ \tan \alpha_4=1/4} \Rightarrow \cases{\tan(\alpha_1+ \alpha_2)={1+1/2 \over 1-1/2}=3\\ \tan(\alpha_3+\alpha_4) = {1/3+1/4\over 1-1/12}={7\over 11}}\\ \Rightarrow \tan(\alpha_1 +\alpha_2 +\alpha_3 +\alpha_4) ={3+7/11\over 1-21/11} = \bbox[red,2pt]{-4} $$
解答:$$z=a+bi \Rightarrow 2z+2|\bar z|=2a+2bi+2 \sqrt{a^2+b^2} =3+2i \Rightarrow \cases{b=1\\ 2a+2\sqrt{a^2+1}=3} \\ \Rightarrow 4(a^2+1)=(3-2a)^2=4a^2-12a+9 \Rightarrow 12a=5 \Rightarrow a=5/12 \Rightarrow z=\bbox[red,2pt]{{5\over 12}+i}$$
解答:
解答:$$\cases{\tan \alpha_1=1 \\ \tan \alpha_2=1/2\\ \tan \alpha_3=1/3 \\ \tan \alpha_4=1/4} \Rightarrow \cases{\tan(\alpha_1+ \alpha_2)={1+1/2 \over 1-1/2}=3\\ \tan(\alpha_3+\alpha_4) = {1/3+1/4\over 1-1/12}={7\over 11}}\\ \Rightarrow \tan(\alpha_1 +\alpha_2 +\alpha_3 +\alpha_4) ={3+7/11\over 1-21/11} = \bbox[red,2pt]{-4} $$
解答:$$z=a+bi \Rightarrow 2z+2|\bar z|=2a+2bi+2 \sqrt{a^2+b^2} =3+2i \Rightarrow \cases{b=1\\ 2a+2\sqrt{a^2+1}=3} \\ \Rightarrow 4(a^2+1)=(3-2a)^2=4a^2-12a+9 \Rightarrow 12a=5 \Rightarrow a=5/12 \Rightarrow z=\bbox[red,2pt]{{5\over 12}+i}$$
解答:
$$(A\cup B)\cap C 有三個元素,即兩直線與圓有三個交點;\\ P\in A\cap B \Rightarrow P=({1\over m+1},{1\over m+1}) \in C \Rightarrow {2\over (m+1)^2}=1 \Rightarrow m= \bbox[red,2pt]{-1\pm \sqrt 2}$$
解答:$$1-9隨機排,共有9!排法;\\數字1:無論哪一種排法都會被取到,因此有9!個1,總和為9!;\\數字2:要排在1的左邊才會被取到,因此有{9!\over 2}個2,總和為{9!\over 2}\times 2=9!\\數字3:要排在1與2的左邊才會被取到,因此有{9!\over 3}個3,總和為{9!\over 3}\times 3=9!\\\cdots \\ 數字9:要排在1-8的左邊,也就是最左邊才會被取到,因此有{9!\over 9}個9,總和為{9!\over 9}\times 9=9!\\因此期望值={1\over 9!}(9!+9!+\cdots +9!)= \bbox[red,2pt]{9}$$
解答:$$zw-2iz-iw-5=zw-2iz-iw+5i^2= z(w-2i)-i(w-5i)=0 \Rightarrow z(w-2i)=i(w-5i)\\ \Rightarrow |z||w-2i|=|i||w-5i| \Rightarrow 2|w-2i|=|w-5i| \Rightarrow 2\overline{AB}=\overline{AC},其中\cases{A(w)=(x,y)\\ B(0,2)\\ C(0,5)}\\ \Rightarrow 2\sqrt{x^2+(y-2)^2} =\sqrt{x^2+(y-5)^2} \Rightarrow 4x^2+4y^2-16y+16=x^2+y^2-10y+25\\ \Rightarrow 3x^2+3y^2-6y=9 \Rightarrow x^2+(y-1)^2=2^2\Rightarrow \sqrt{(x-0)^2+(y-1)^2}=2 \Rightarrow |w-i|=2\\,\bbox[red,2pt]{故得證}$$
解答:$$f(x)=(x+1)^n= C^n_0+ C^n_1x +C^n_2x^2+\cdots +C^n_nx^n \\\Rightarrow f(i)=(i+1)^n= (\sqrt 2e^{\pi i/4})^n= C^n_0+C^n_1i-C^n_2-C^n_3i+\cdots \\ \Rightarrow 2^{n/2}e^{n\pi i/4}=(C^n_0-C^n_2+C^n_4-\cdots)+i(C^n_1-C^n_3+ C^n_5-\cdots) \\ \Rightarrow \cases{C^n_0-C^n_2+C^n_4-\cdots=2^{n/2}\cos({n\pi/4}) \\C^n_1-C^n_3+ C^n_5-\cdots=2^{n/2}\sin (n\pi/4)} \\ \Rightarrow (C^n_0-C^n_2+C^n_4-\cdots)^2 +(C^n_1-C^n_3+ C^n_5-\cdots)^2 =2^{n }\cos^2({n\pi/4}) +2^n\sin^2 (n\pi/4)\\ =2^n\left(\cos^2({n\pi/4}) +\sin^2 (n\pi/4)\right)=2^n,\bbox[red, 2pt]{故得證}$$
解答:$$1-9隨機排,共有9!排法;\\數字1:無論哪一種排法都會被取到,因此有9!個1,總和為9!;\\數字2:要排在1的左邊才會被取到,因此有{9!\over 2}個2,總和為{9!\over 2}\times 2=9!\\數字3:要排在1與2的左邊才會被取到,因此有{9!\over 3}個3,總和為{9!\over 3}\times 3=9!\\\cdots \\ 數字9:要排在1-8的左邊,也就是最左邊才會被取到,因此有{9!\over 9}個9,總和為{9!\over 9}\times 9=9!\\因此期望值={1\over 9!}(9!+9!+\cdots +9!)= \bbox[red,2pt]{9}$$
解答:$$只能用湊的,f(x)=\lfloor{x\over 1!} \rfloor +\lfloor{x\over 2!} \rfloor +\cdots +\lfloor{x\over 10!} \rfloor \\=\lfloor{x } \rfloor +\lfloor{x\over 2} \rfloor +\lfloor{x\over 6} \rfloor +\lfloor{x\over 24} \rfloor +\lfloor{x\over 120} \rfloor +\lfloor{x\over 720} \rfloor +\cdots \\\Rightarrow \cases{ f(700)= 700+350 +\cdots \gt 1001\\ f(600)=600+300+100+ 25+ \cdots \gt 1001\\f(500)=500+250+83+20+4+0+0\cdots=857 \lt 1001} \Rightarrow 500\lt n\lt 600\\\Rightarrow \cases{f(550)=550+275+ 91+22 +4=942 \lt 1001\\ f(575) \lt 1001 \\ f(584)= 584+292+ 97+ 24+ 4= 1001} \Rightarrow n=\bbox[red,2pt]{584}$$
二、 證明題(每題8分,共24分)
解答:$$\cos \angle B=\cos 60^\circ = {1\over 2}={a^2+c^2-b^2\over 2ac} \Rightarrow a^2+c^2=b^2+ac\cdots(1)\\ (a+b+c) \left( {1\over a+b} +{1\over b+c}\right)= 1+{c\over a+b}+1+{a\over b+c} =2+{c(b+c)+a(a+b)\over (a+b)(b+c)}\\\qquad =2+{a^2+c^2+bc+ab \over (a+b)(b+c)}\cdots(2)\\ 將(1)代入(2) \Rightarrow 2+{a^2+c^2+bc+ab \over (a+b)(b+c)}=2+ {b^2+ac+bc+ ab \over (a+b)(b+c)} =2+ {(a+b)(b+c) \over (a+b)(b+c)}=3\\ \Rightarrow (a+b+c) \left( {1\over a+b} +{1\over b+c}\right)= 3,\bbox[red,2pt]{故得證}$$解答:$$zw-2iz-iw-5=zw-2iz-iw+5i^2= z(w-2i)-i(w-5i)=0 \Rightarrow z(w-2i)=i(w-5i)\\ \Rightarrow |z||w-2i|=|i||w-5i| \Rightarrow 2|w-2i|=|w-5i| \Rightarrow 2\overline{AB}=\overline{AC},其中\cases{A(w)=(x,y)\\ B(0,2)\\ C(0,5)}\\ \Rightarrow 2\sqrt{x^2+(y-2)^2} =\sqrt{x^2+(y-5)^2} \Rightarrow 4x^2+4y^2-16y+16=x^2+y^2-10y+25\\ \Rightarrow 3x^2+3y^2-6y=9 \Rightarrow x^2+(y-1)^2=2^2\Rightarrow \sqrt{(x-0)^2+(y-1)^2}=2 \Rightarrow |w-i|=2\\,\bbox[red,2pt]{故得證}$$
解答:$$f(x)=(x+1)^n= C^n_0+ C^n_1x +C^n_2x^2+\cdots +C^n_nx^n \\\Rightarrow f(i)=(i+1)^n= (\sqrt 2e^{\pi i/4})^n= C^n_0+C^n_1i-C^n_2-C^n_3i+\cdots \\ \Rightarrow 2^{n/2}e^{n\pi i/4}=(C^n_0-C^n_2+C^n_4-\cdots)+i(C^n_1-C^n_3+ C^n_5-\cdots) \\ \Rightarrow \cases{C^n_0-C^n_2+C^n_4-\cdots=2^{n/2}\cos({n\pi/4}) \\C^n_1-C^n_3+ C^n_5-\cdots=2^{n/2}\sin (n\pi/4)} \\ \Rightarrow (C^n_0-C^n_2+C^n_4-\cdots)^2 +(C^n_1-C^n_3+ C^n_5-\cdots)^2 =2^{n }\cos^2({n\pi/4}) +2^n\sin^2 (n\pi/4)\\ =2^n\left(\cos^2({n\pi/4}) +\sin^2 (n\pi/4)\right)=2^n,\bbox[red, 2pt]{故得證}$$
=============== END ===================
想請問單選4的一般式是怎麼寫出來的,我只知道特徵值重根,但不知道怎麼繼續做下去
回覆刪除我把答案寫得更仔細一點,希望有幫助理解!!!!
刪除寫得很詳細非常感謝,這題困惑我好久
刪除