112 學年度臺中市政府教育局受託辦理本市立國民中學
(含本市立高級中等學校附設國中部)教師甄選
選擇題(共 40 題,每題 2.5分,共 100 分)
解答:{x≥1⇒x+3−(x+1)−(x−1)=0⇒x=3−3≤x≤1⇒x+3−(x+1)−(1−x)=0⇒x=−1x≤−3⇒−x−3−(x+1)−1+x=0⇒x=−5⇒3−1−5=−3,故選(A),公布的答案是(B)解答:f(x)=x−3⇒f(0)不存在,故選(D)
解答:limn→∞sin(1/n)(1/n)=limn→∞sin(1/n)(1/n)=limn→∞−(1/n2)cos(1/n)−1/n2=limn→∞cos1n=1由極限比較審斂法(LCT)得知:∞∑n=1sin1n與∞∑n=11n同斂散,而∞∑n=11n發散,因此∞∑n=1sin1n發散,故選(D)
解答:假設A−1=[abcd],依題意{A[13]=[10]A[42]=[02]⇒{[13]=A−1[10]=[ac][42]=A−1[02]=[2b2d]⇒{a=1b=2c=3d=1⇒A−1=[1231],故選(D)
解答:H的階數必須是3的倍數,故選(C)
解答:假設{A:戴戒指B:戴項鍊,依題意{1−P(A∪B)=0.6⇒P(A∪B)=0.4P(A)=0.2P(B)=0.3⇒P(A∩B)=0.2+0.3−0.4=0.1,故選(A)
解答:162=256,故選(D)
解答:E[(X+1)2]=E[X2+2X+1]=E[X2]+2E[X]+E[1]=E[X2]+2+1=E[X2]+3=8⇒E[X2]=5⇒Var(X)=E[X2]−(E[X])2=5−1=4⇒Var(X)=4因此Var(1−3x)=9Var(X)=36,故選(D)
解答:f(x)=1x(x+1)(x+2)=12(1x(x+1)−1(x+1)(x+2))⇒f(1)+f(2)+⋯+f(10)=12(12−111×12)=65264=ab⇒a+b=329,故選(D)
解答:
取{B(0,0)A(0,4)C(3,0)⇒{D(0,3)E(3/4,3)⇒{L1=↔CD:x+y=3L2=↔BE:y=4x⇒F=L1∩L2=(3/5,12/5)⇒{¯CD=3√2¯DF=35√2⇒k=33/5=5,故選(C)
解答:
解答:
將y=x−1代入y2=2x+6⇒x2−2x+1=2x+6⇒x2−4x−5=0⇒(x−5)(x+1)=0⇒{x=−1⇒y=−2x=5⇒y=4⇒交點{A(−1,−2)B(5,4)又{y=x−1y2=2x+6⇒{x=y+1x=(y2−6)/2⇒∫4−2(y+1)−(y2−6)/2dy=∫4−2−12y2+y+4dy,故選(A)
解答:圖1:∫10e√xdx=[2e√x(√x−1)]|10=2圖2:∫10xexdx=[ex(x−1)]|10=1圖3:∫π/20esinxsin(2x)dx=[2esinx(sin(x)−1)]|π/20=2⇒圖1面積=圖3面積,故選(B)
解答:f=cos(xyz)−x2y2−z⇒{fx=−yzsin(xyz)−2xy2fy=−xzsin(xyz)−2x2yfz=−xysin(xyz)−1⇒∇f(1,−1,0)=(−2,2,−1)⇒切平面:−2(x−1)+2(y+1)−z=0⇒z=−2x+2y+4,故選(B)
解答:,故選()
解答:f(1+x1−x)=f(21−x−1)=x⇒f′(21−x−1)⋅2(1−x)2=1x=13⇒f′(2)⋅24/9=1⇒f′(2)=29,故選(C)
解答:f′(x)≥6⇒斜率≥6⇒f(4)≥f(1)+(4−1)×6=30,故選(A)
解答:xy數量11−111121−111131−101041−9951−77⇒共有11+11+10+9+7=48組解,故選(B)
解答:所有偶數{◻◻◻2◻◻◻4◻◻◻6各有5×4×3=60個,共60×3=180個需扣除3在百位數{◻3◻2◻3◻4◻3◻6各有4×3=12個,共有12×3=36個因此合乎要求的有180−36=144個偶數,故選(D)
解答:,故選()
解答:假設{紅球有a個白球有20−a個⇒{取到1紅1白的機率=a(20−a)/C202取到2紅球的機率=Ca2/C202⇒取到紅球個數的期望值=a(20−a)C202+2Ca2C202=19a190=a10=45⇒a=8,故選(A)
解答:(x2−2kx+k2)+(y2−2ky+k2)=k2−4k+2a⇒(x−k)2+(y−k)2=(k−2)2+2a−4⇒圓半徑2=(k−2)2+2a−4>0⇒2a−4>0⇒a>2,故選(D)
解答:第6,7,8,9次進球合計24+14+12+22=72球假設{前5次投籃共進a球第10次投籃投進b球⇒{前5次平均進球數=a/5前9次平均進球數=(a+72)/9投10次平均進球數=(a+b+72)/10⇒{(a+72)/9>a/5(a+b+72)/10>18⇒{a<90a+b>108⇒a最大值為89⇒b>108−89=19⇒b=20,故選(C)
解答:A與B都不發生的機率=4363=64216⇒至少發生A或B的機率=1−64216=152216=1927⇒a+b=19+27=46,故選(D)
解答:
解答:f=cos(xyz)−x2y2−z⇒{fx=−yzsin(xyz)−2xy2fy=−xzsin(xyz)−2x2yfz=−xysin(xyz)−1⇒∇f(1,−1,0)=(−2,2,−1)⇒切平面:−2(x−1)+2(y+1)−z=0⇒z=−2x+2y+4,故選(B)
解答:,故選()
解答:f(1+x1−x)=f(21−x−1)=x⇒f′(21−x−1)⋅2(1−x)2=1x=13⇒f′(2)⋅24/9=1⇒f′(2)=29,故選(C)
解答:f′(x)≥6⇒斜率≥6⇒f(4)≥f(1)+(4−1)×6=30,故選(A)
解答:xy數量11−111121−111131−101041−9951−77⇒共有11+11+10+9+7=48組解,故選(B)
解答:所有偶數{◻◻◻2◻◻◻4◻◻◻6各有5×4×3=60個,共60×3=180個需扣除3在百位數{◻3◻2◻3◻4◻3◻6各有4×3=12個,共有12×3=36個因此合乎要求的有180−36=144個偶數,故選(D)
解答:,故選()
解答:假設{紅球有a個白球有20−a個⇒{取到1紅1白的機率=a(20−a)/C202取到2紅球的機率=Ca2/C202⇒取到紅球個數的期望值=a(20−a)C202+2Ca2C202=19a190=a10=45⇒a=8,故選(A)
解答:(x2−2kx+k2)+(y2−2ky+k2)=k2−4k+2a⇒(x−k)2+(y−k)2=(k−2)2+2a−4⇒圓半徑2=(k−2)2+2a−4>0⇒2a−4>0⇒a>2,故選(D)
解答:第6,7,8,9次進球合計24+14+12+22=72球假設{前5次投籃共進a球第10次投籃投進b球⇒{前5次平均進球數=a/5前9次平均進球數=(a+72)/9投10次平均進球數=(a+b+72)/10⇒{(a+72)/9>a/5(a+b+72)/10>18⇒{a<90a+b>108⇒a最大值為89⇒b>108−89=19⇒b=20,故選(C)
解答:A與B都不發生的機率=4363=64216⇒至少發生A或B的機率=1−64216=152216=1927⇒a+b=19+27=46,故選(D)
解答:
取{E(0,0)B(0,4)C(0,−4)D(−8,0)⇒F=(B+D)÷2=(−4,2)⇒A=3F−2E=(−12,6)⇒L=↔AC:5x+6y+24=0⇒k=△ABC△ACD=d(B,L)d(D,L)=4816=3,故選(B)
解答:f(x)=cos2(2x)+6sin2x+3=cos2(2x)+6⋅1−cos2x2+3=cos2(2x)−3cos(2x)+6=(cos(2x)−32)2+154⇒{最大值b=f(π/2)=10最小值a=f(0)=4⇒2b−a=20−4=16,故選(C)
解答:limn→∞n∑k=11√k2+nk+n2=limn→∞n∑k=11/n√(k/n)2+(k/n)+1=∫101√x2+x+1dx=[ln|2√3x+1√3+2√3√(x2+x+1)|]|10=ln(2+√3)−ln√3=ln2+√3√3=lnα⇒α=2√3+1=1+2√33,故選(B)
解答:R={(x,y)∣0≤y≤√2x−x2}為圓(x−1)2+y2=1的上半部取{x=rcosθy=rsinθ,由於y≤√2x−x2⇒x2+y2≤2x⇒r2≤2rcosθ⇒r≤2cosθ因此∬
解答:A=\begin{bmatrix}1 & -1 & 0 \\-1 & 3 & -1 \\0 & -1 &2\end{bmatrix}\Rightarrow \det(A-\lambda I) = \lambda^3- 6\lambda^2+9\lambda-3 =0\Rightarrow \cases{\alpha_1 +\alpha_2 +\alpha_3=6 \\ \alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1=9\\\alpha_1 \alpha_2 \alpha_3=3} \\ \Rightarrow (\alpha_1 +\alpha_2 +\alpha_3)^2= \alpha_1^2 +\alpha_2^2 +\alpha_3^2+ 2(\alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1) \Rightarrow 36=\alpha_1^2 +\alpha_2^2 +\alpha_3^2+18 \\ \Rightarrow \alpha_1^2 +\alpha_2^2 +\alpha_3^2=36-18=18 \\又 \alpha_1^3 +\alpha_2^3 +\alpha_3^3-3\alpha_1 \alpha_2 \alpha_3 =(\alpha_1 +\alpha_2 +\alpha_3)(\alpha_1^2 +\alpha_2^2 +\alpha_3^2-(\alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1)) \\ \Rightarrow \alpha_1^3 +\alpha_2^3 +\alpha_3^3-9=6(18-9) \Rightarrow \alpha_1^3 +\alpha_2^3 +\alpha_3^3=54+9=63,故選\bbox[red, 2pt]{(C)}
解答:{x+y/2+y/2+z/3+z/3+z/3\over 6}\ge \sqrt[6]{xy^2z^3\over 36}\\ xy^2z^3有極有值時,x={y\over 2}={z\over 3} \Rightarrow \cases{z=3x\\ y=2x} \Rightarrow x+y+ z=6x =2 \Rightarrow \cases{x=1/3 =\alpha\\ y=2/3 =\beta\\ z=1= \gamma} \\ \Rightarrow 3\alpha+\gamma =1+1=2,故選\bbox[red, 2pt]{(A)}
解答:令\cases{a=\sqrt[3]{\sqrt{17}+3} \\b= \sqrt[3]{\sqrt{17}-3}} \Rightarrow x=a-b \Rightarrow x^3=(a-b)^3 =a^3-b^3 -3ab(a-b) =6-3\sqrt[3]{8}x\\ \Rightarrow x^3=6-6x \Rightarrow x^3+6x+7=6-6x+6x+7=13,故選\bbox[red, 2pt]{(D)}
解答:\lim_{k\to \infty}\left| {a_{k+1}\over a_k}\right| =\lim_{k\to \infty}\left| {{(k+1)!\over (k+1)^{k+1}}(x-1)^{k+1} \over {k!\over k^k}(x-1)^k}\right| =\lim_{k\to \infty}\left| {({k\over k+1}})^k (x-1)\right| = \left| {{1\over e}} (x-1)\right| \lt 1 \\ \Rightarrow 1-e\lt x\lt 1+e \Rightarrow \cases{a=1-e\\ b=1+e} \Rightarrow a+2b=1-e+2+2e=3+e,故選\bbox[red, 2pt]{(D)}
解答:\sin x =x-{x^3\over 3!}+{x^5\over 5!}-\cdots \Rightarrow \sin{1\over x} ={1 \over x}-{1\over 3! x^3} +{1\over 5! x^5}-\cdots \\ \Rightarrow x\sin{1\over x} =1-{1\over 3!x^2}+ {1\over 5!x^4} -\cdots \cdots(1)\\ 而\lim_{x\to \infty} \sqrt{x^2-x}-x =\lim_{x\to \infty} {-x\over \sqrt{x^2-x}+x} =\lim_{x\to \infty} {-1\over \sqrt{1- 1/x}+1} =-{1\over 2}\cdots(2) \\ 由(1)及(2)可得: \lim_{x\to \infty} x\left(\sqrt{x^2-x}-x \right) \sin({1\over x}) =-{1\over 2},故選\bbox[red, 2pt]{(A)}
解答:f(x)=cos2(2x)+6sin2x+3=cos2(2x)+6⋅1−cos2x2+3=cos2(2x)−3cos(2x)+6=(cos(2x)−32)2+154⇒{最大值b=f(π/2)=10最小值a=f(0)=4⇒2b−a=20−4=16,故選(C)
解答:limn→∞n∑k=11√k2+nk+n2=limn→∞n∑k=11/n√(k/n)2+(k/n)+1=∫101√x2+x+1dx=[ln|2√3x+1√3+2√3√(x2+x+1)|]|10=ln(2+√3)−ln√3=ln2+√3√3=lnα⇒α=2√3+1=1+2√33,故選(B)
解答:R={(x,y)∣0≤y≤√2x−x2}為圓(x−1)2+y2=1的上半部取{x=rcosθy=rsinθ,由於y≤√2x−x2⇒x2+y2≤2x⇒r2≤2rcosθ⇒r≤2cosθ因此∬
解答:A=\begin{bmatrix}1 & -1 & 0 \\-1 & 3 & -1 \\0 & -1 &2\end{bmatrix}\Rightarrow \det(A-\lambda I) = \lambda^3- 6\lambda^2+9\lambda-3 =0\Rightarrow \cases{\alpha_1 +\alpha_2 +\alpha_3=6 \\ \alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1=9\\\alpha_1 \alpha_2 \alpha_3=3} \\ \Rightarrow (\alpha_1 +\alpha_2 +\alpha_3)^2= \alpha_1^2 +\alpha_2^2 +\alpha_3^2+ 2(\alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1) \Rightarrow 36=\alpha_1^2 +\alpha_2^2 +\alpha_3^2+18 \\ \Rightarrow \alpha_1^2 +\alpha_2^2 +\alpha_3^2=36-18=18 \\又 \alpha_1^3 +\alpha_2^3 +\alpha_3^3-3\alpha_1 \alpha_2 \alpha_3 =(\alpha_1 +\alpha_2 +\alpha_3)(\alpha_1^2 +\alpha_2^2 +\alpha_3^2-(\alpha_1 \alpha_2 +\alpha_2\alpha_3 +\alpha_3\alpha_1)) \\ \Rightarrow \alpha_1^3 +\alpha_2^3 +\alpha_3^3-9=6(18-9) \Rightarrow \alpha_1^3 +\alpha_2^3 +\alpha_3^3=54+9=63,故選\bbox[red, 2pt]{(C)}
解答:{x+y/2+y/2+z/3+z/3+z/3\over 6}\ge \sqrt[6]{xy^2z^3\over 36}\\ xy^2z^3有極有值時,x={y\over 2}={z\over 3} \Rightarrow \cases{z=3x\\ y=2x} \Rightarrow x+y+ z=6x =2 \Rightarrow \cases{x=1/3 =\alpha\\ y=2/3 =\beta\\ z=1= \gamma} \\ \Rightarrow 3\alpha+\gamma =1+1=2,故選\bbox[red, 2pt]{(A)}
解答:令\cases{a=\sqrt[3]{\sqrt{17}+3} \\b= \sqrt[3]{\sqrt{17}-3}} \Rightarrow x=a-b \Rightarrow x^3=(a-b)^3 =a^3-b^3 -3ab(a-b) =6-3\sqrt[3]{8}x\\ \Rightarrow x^3=6-6x \Rightarrow x^3+6x+7=6-6x+6x+7=13,故選\bbox[red, 2pt]{(D)}
解答:\lim_{k\to \infty}\left| {a_{k+1}\over a_k}\right| =\lim_{k\to \infty}\left| {{(k+1)!\over (k+1)^{k+1}}(x-1)^{k+1} \over {k!\over k^k}(x-1)^k}\right| =\lim_{k\to \infty}\left| {({k\over k+1}})^k (x-1)\right| = \left| {{1\over e}} (x-1)\right| \lt 1 \\ \Rightarrow 1-e\lt x\lt 1+e \Rightarrow \cases{a=1-e\\ b=1+e} \Rightarrow a+2b=1-e+2+2e=3+e,故選\bbox[red, 2pt]{(D)}
解答:\sin x =x-{x^3\over 3!}+{x^5\over 5!}-\cdots \Rightarrow \sin{1\over x} ={1 \over x}-{1\over 3! x^3} +{1\over 5! x^5}-\cdots \\ \Rightarrow x\sin{1\over x} =1-{1\over 3!x^2}+ {1\over 5!x^4} -\cdots \cdots(1)\\ 而\lim_{x\to \infty} \sqrt{x^2-x}-x =\lim_{x\to \infty} {-x\over \sqrt{x^2-x}+x} =\lim_{x\to \infty} {-1\over \sqrt{1- 1/x}+1} =-{1\over 2}\cdots(2) \\ 由(1)及(2)可得: \lim_{x\to \infty} x\left(\sqrt{x^2-x}-x \right) \sin({1\over x}) =-{1\over 2},故選\bbox[red, 2pt]{(A)}
解答:f(t)\in P_2(\mathbb R) \Rightarrow f(t)=at^2+bt +c, a,b,c\in \mathbb R \Rightarrow f'(x)=2ax+b\\ \Rightarrow T(f)(x) =3(2ax+b)+ \int_0^x (2at^2+ 2bt +2c) \,dt ={2\over 3}ax^3+ bx^2 +(6a+2c)x+3b\\ \text{If }T(f)(x) =0, \text{ then we have }a=b=c=0 \Rightarrow Null(T)=\{0\} \Rightarrow \text{nullity}(T)=0,故選\bbox[red, 2pt]{(A)}
解答:\det(A-\lambda I)=0 \Rightarrow -\lambda^3+8\lambda^2-4\lambda-48=0 \Rightarrow -(\lambda+2)(\lambda-4) (\lambda-6)=0\\ \Rightarrow 特徵值=-2,4,6,故選\bbox[red, 2pt]{(B)}
解答:取\cases{p=a-3\\ q=b-2\\ r=c-1} \Rightarrow a+b+c\le 15 \Rightarrow p+q+r\le 9 \Rightarrow 共有H^4_9=220組整數解,故選\bbox[red, 2pt]{(B)}
解答:\cases{\cases{x+y+1=0\\ x-y+3=0} \Rightarrow (x,y)=(-2,1)\\ \cases{x+2y+4=0\\ x-2y+12=0} \Rightarrow (x,y)=(-8,2)} \Rightarrow r=4,s=2 \Rightarrow r+s=6 ,故選\bbox[red, 2pt]{(B)}
解答:A=\begin{bmatrix}4 & 4 \\-1 & -1 \end{bmatrix} =\begin{bmatrix}-1 & -4\\1 & 1 \end{bmatrix} \begin{bmatrix}0 & 0 \\0 & 3 \end{bmatrix} \begin{bmatrix}1/3 & 4/3 \\-1/3 & -1/3 \end{bmatrix} \equiv PDP^{-1} \\ \Rightarrow A^n=PD^nP^{-1} \Rightarrow A+ A^2+\cdots +A^n =P(D+D^2+\cdots +D^n)P^{-1} \\=P\begin{bmatrix}0 & 0 \\0 & 3+3^2+\cdots +3^n \end{bmatrix} P^{-1} =P\begin{bmatrix}0 & 0 \\0 & (3^{n+1}-3)/2 \end{bmatrix} P^{-1} =\begin{bmatrix} 2(3^n-1) & 2(3^n-1) \\{1\over 2}(1-3^n) & {1\over 2}(1-3^n) \end{bmatrix} \\ \Rightarrow b+c={1\over 2}(1-3^n)+ {1\over 2}(1-3^n)=1-3^n,故選\bbox[red, 2pt]{(B)}
解答:f(x,y)=x^3-y^3+6x^2+ 2x+y+2 =(x^3+ 3x^2 +2x)+3x^2 -(y^3-y)+2 \\=x(x^2+3x+2)+ 3x^2-y(y^2-1)+2= x(x+1)(x+2)+3x^2-(y-1)y(y+1)+2 \\ 連續三整數之積必為3的倍數 \Rightarrow \cases{x(x+1)(x+2)=3k\\ 3x^2=3m\\ (y-1)y(y+1)= 3n} \\ \Rightarrow f(x,y)=3(k+m-n)+2 \ne 0, \forall k,m,n\in \mathbb Z,故選\bbox[red, 2pt]{(A)}
解答:\lim_{n\to \infty}\left[2n^2 \left({r\over n}-\sum_{k=1}^r {1\over n+k}\right) \right] =\lim_{n\to \infty}\left[2nr -\sum_{k=1}^r {2n^2\over n+k} \right]\\ =\lim_{n\to \infty}\left[2nr -\sum_{k=1}^r \left((2n-2k)+{2k^2\over n+k} \right) \right] =\lim_{n\to \infty}\left[2nr - \left(2nr-r(r+1)+\sum_{k=1}^r{2k^2\over n+k} \right) \right] \\=\lim_{n\to \infty}\left[r(r+1)-\sum_{k=1}^r{2k^2\over n+k} \right] =r(r+1)-\lim_{n\to \infty}\sum_{k=1}^r{2k^2\over n+k} =r(r+1),故選\bbox[red, 2pt]{(D)}
解答:{b\over a}={|b^2+c^2-a^2|\over bc} ={b^2+c^2-a^2\over bc} (c\gt b\gt a \Rightarrow c^2+b^2-\gt a^2 )\\ \Rightarrow {b\over 2a}={b^2+c^2-a^2\over 2bc} \Rightarrow {\sin B\over 2\sin A}=\cos A \Rightarrow \sin B=\sin(2A) \Rightarrow \angle B=2\angle A\\ 同理,{c\over b}={|c^2+a^2-b^2| \over ca} \Rightarrow \sin C= \sin(2B) \Rightarrow C=2\angle B \\ 因此\angle A+ \angle B+ \angle C=\angle A+2\angle A+4\angle A=7\angle A=\pi \Rightarrow \angle A={\pi \over 7},故選\bbox[red, 2pt]{(A)}
解答:\det(A-\lambda I)=0 \Rightarrow -\lambda^3+8\lambda^2-4\lambda-48=0 \Rightarrow -(\lambda+2)(\lambda-4) (\lambda-6)=0\\ \Rightarrow 特徵值=-2,4,6,故選\bbox[red, 2pt]{(B)}
解答:取\cases{p=a-3\\ q=b-2\\ r=c-1} \Rightarrow a+b+c\le 15 \Rightarrow p+q+r\le 9 \Rightarrow 共有H^4_9=220組整數解,故選\bbox[red, 2pt]{(B)}
解答:\cases{\cases{x+y+1=0\\ x-y+3=0} \Rightarrow (x,y)=(-2,1)\\ \cases{x+2y+4=0\\ x-2y+12=0} \Rightarrow (x,y)=(-8,2)} \Rightarrow r=4,s=2 \Rightarrow r+s=6 ,故選\bbox[red, 2pt]{(B)}
解答:A=\begin{bmatrix}4 & 4 \\-1 & -1 \end{bmatrix} =\begin{bmatrix}-1 & -4\\1 & 1 \end{bmatrix} \begin{bmatrix}0 & 0 \\0 & 3 \end{bmatrix} \begin{bmatrix}1/3 & 4/3 \\-1/3 & -1/3 \end{bmatrix} \equiv PDP^{-1} \\ \Rightarrow A^n=PD^nP^{-1} \Rightarrow A+ A^2+\cdots +A^n =P(D+D^2+\cdots +D^n)P^{-1} \\=P\begin{bmatrix}0 & 0 \\0 & 3+3^2+\cdots +3^n \end{bmatrix} P^{-1} =P\begin{bmatrix}0 & 0 \\0 & (3^{n+1}-3)/2 \end{bmatrix} P^{-1} =\begin{bmatrix} 2(3^n-1) & 2(3^n-1) \\{1\over 2}(1-3^n) & {1\over 2}(1-3^n) \end{bmatrix} \\ \Rightarrow b+c={1\over 2}(1-3^n)+ {1\over 2}(1-3^n)=1-3^n,故選\bbox[red, 2pt]{(B)}
解答:f(x,y)=x^3-y^3+6x^2+ 2x+y+2 =(x^3+ 3x^2 +2x)+3x^2 -(y^3-y)+2 \\=x(x^2+3x+2)+ 3x^2-y(y^2-1)+2= x(x+1)(x+2)+3x^2-(y-1)y(y+1)+2 \\ 連續三整數之積必為3的倍數 \Rightarrow \cases{x(x+1)(x+2)=3k\\ 3x^2=3m\\ (y-1)y(y+1)= 3n} \\ \Rightarrow f(x,y)=3(k+m-n)+2 \ne 0, \forall k,m,n\in \mathbb Z,故選\bbox[red, 2pt]{(A)}
解答:\lim_{n\to \infty}\left[2n^2 \left({r\over n}-\sum_{k=1}^r {1\over n+k}\right) \right] =\lim_{n\to \infty}\left[2nr -\sum_{k=1}^r {2n^2\over n+k} \right]\\ =\lim_{n\to \infty}\left[2nr -\sum_{k=1}^r \left((2n-2k)+{2k^2\over n+k} \right) \right] =\lim_{n\to \infty}\left[2nr - \left(2nr-r(r+1)+\sum_{k=1}^r{2k^2\over n+k} \right) \right] \\=\lim_{n\to \infty}\left[r(r+1)-\sum_{k=1}^r{2k^2\over n+k} \right] =r(r+1)-\lim_{n\to \infty}\sum_{k=1}^r{2k^2\over n+k} =r(r+1),故選\bbox[red, 2pt]{(D)}
解答:{b\over a}={|b^2+c^2-a^2|\over bc} ={b^2+c^2-a^2\over bc} (c\gt b\gt a \Rightarrow c^2+b^2-\gt a^2 )\\ \Rightarrow {b\over 2a}={b^2+c^2-a^2\over 2bc} \Rightarrow {\sin B\over 2\sin A}=\cos A \Rightarrow \sin B=\sin(2A) \Rightarrow \angle B=2\angle A\\ 同理,{c\over b}={|c^2+a^2-b^2| \over ca} \Rightarrow \sin C= \sin(2B) \Rightarrow C=2\angle B \\ 因此\angle A+ \angle B+ \angle C=\angle A+2\angle A+4\angle A=7\angle A=\pi \Rightarrow \angle A={\pi \over 7},故選\bbox[red, 2pt]{(A)}
============================ END =============================解題僅供參考,其他教甄試題及詳解
老師您好
回覆刪除32題有亂碼,38題可幫忙解題嗎 謝謝您
亂碼已修訂,但38題再想想!
刪除好的!謝謝老師!
刪除38題已更新, 太久了,竟然忘記還有這一題
刪除老師您好,想請教33題
回覆刪除已把它寫得再詳細一點了,請參考...
刪除