103年國家安全局國家安全情報人員考試
考 試 別:國家安全情報人員
等 別:三等考試
類 科 組:電子組
科 目:工程數學
甲、申論題部分:( 50 分)
解答:
(一)xTAx=[x1x2][451−4][x1x2]=[4x1+x25x1−4x2][x1x2]=4x21+x1x2+5x1x2−4x22=4x21+6x1x2−4x22⇒判別式=62−4×4×(−4)>0⇒Q為雙曲線(二)Q=xTAx=4x21+6x1x2−4x22=[x1x2][433−4][x1x2]取B=[433−4]⇒Q=xTBx(以B取代A,因為B符合B=BT)將B對角化可得B=[3/√101/√101/√10−3/√10][500−5][3/√101/√101/√10−3/√10]≡PDPT⇒正交主軸轉換矩陣=[3/√101/√101/√10−3/√10]
解答:先求齊次解,即y″−2y′−8y=0⇒特徵方程式λ2−2λ−8=0⇒(λ−4)(λ+2)=0⇒λ=4,−2⇒yh=c1e4x+c2e−2x令{y1=e4xy2=e−2x⇒W=|y1y2y′1y′2|=|e4xe−2x4e4x−2e−2x|=−6e2x⇒yp=−y1∫y2⋅r(x)Wdx+y2∫y1r(x)Wdx,其中r(x)=10e−x+8e2x⇒yp=−e4x∫10e−3x+8−6e2xdx+e−2x∫10e3x+8e6x−6e2xdx=−e4x(13e−5x+23e−2x)+e−2x(−53ex−13e4x)=−2e−x−e2x⇒y=yh+yp=c1e4x+c2e−2x−2e−x−e2x⇒y′=4c1e4x−2c2e−2x+2e−x−2e2x再將初始值{y(0)=1y′(0)=4代入,可得{c1+c2−2−1=14c1−2c2+2−2=4⇒{c1=2c2=2⇒y=2e4x−e2x−2e−x+2e−2x
解答:x4=1+i=√2(1√2+i1√2)=√2(cosπ4+isinπ4)=√2ei(π/4+2kπ),k∈Z⇒xk=21/8ei(π/16+kπ/2),k=0,1,2,3⇒四次方根為8√2eπi/16,8√2e9πi/16,8√2e17πi/16,8√2e25πi/16
解答:
(一)∫20∫x2−x22cxdydx=∫204cx3dx=[cx4]|20=16c=1⇒c=116(二)fX(x)=∫x2−x218xdy=14x3⇒fX(x)={14x3,0≤x≤20,其它;
(三)見上圖,{上半部∫2√y18xdx=1/4−y/16下半部∫2√−y18xdx=1/4+y/16⇒fY(y)={14−116y,0≤y≤414+116y,−4≤y≤00,其它;
乙、測驗題部分:(50 分)
解答:(∂∂xz,∂∂yz)|(4,1)=(−2x,−18y)|(4,1)=(−8,−18)=8(−1,−2.25),故選(A)
解答:路徑C可表示成(x(t),y(t)),其中{x(t)=cos(t)y(t)=sin(t)⇒{x′(t)=−sin(t)y′(t)=cos(t),t=0−π2因此∫CF⋅dr=∫C(−y,−xy)⋅(dx,dy)=∫π/20(−sin(t))(−sin(t)dt)+(−sin(t)cos(t))(cos(t)dt)=∫π/20sin2(t)−sin(t)cos2(t)dt=[12t−14tsin(2t)+13cos3(t)]|π/20=π4−13⇒{a=4b=−3⇒a+b=1,故選(A)
解答:{→F=(x,y,z)∇=(∂∂x,∂∂y,∂∂z)⇒{∇⋅→F=∂∂xx+∂∂yy+∂∂zz=1+1+1=3∇×→F=(∂∂yz−∂∂zy,∂∂zx−∂∂xz,∂∂xy−∂∂yx)=→0,故選(D)
解答:Hermitian 矩陣的特徵值皆為實數,故選(C)
解答:tr(AB)=(4,5,7)⋅(2,7,10)+(3,6,8)⋅(5,9,13)=113+183=286,故選(D)
解答:(B)(C)(D)均不符合T(0,0)=(0,0),非線性轉換,故選(A)
解答:f(t)=det
解答:e^z=1+i\sqrt 3=2({1\over 2}+i{\sqrt 3\over 2})=2(\cos(\pi/3)+ i\sin(\pi/3))=e^{\ln 2}\cdot e^{i\pi/3} \\=e^{\ln 2+i\pi/3} \Rightarrow z=\ln 2+i(\pi/3+2k\pi),k\in \mathbb{Z},故選\bbox[red,2pt]{(D)}
解答:|z|\lt |3+4i|=5收斂,故選\bbox[red,2pt]{(C)}
解答: 令y=x+2 \Rightarrow {x-2\over x^2+4x+5} ={x-2\over (x+2)^2+1}={y-4\over y^2+1} =(y-4)(1-y^2+y^4-y^6+\cdots) \\ =(y-y^3+y^5-y^7+\cdots )-(4-4y^2+4y^4-4y^6+ \cdots)\\ \Rightarrow y^2\lt 1則上式收斂,即(x+2)^2 \lt 1 \Rightarrow |x+2|\lt 1,收斂半徑為1,故選\bbox[red,2pt]{(B)}
解答:x^2y'+y^2=xy \Rightarrow y'-{1\over x}y=-{1\over x^2}y^2 \text{ (Bernoulli equation)}\\ 取u={1\over y} \Rightarrow u'= -{1\over y^2}y'代回原式\Rightarrow u'+{1\over x}u={1\over x^2} \Rightarrow xu'+u={1\over x} \Rightarrow (xu)'={1\over x}\\ \Rightarrow xu=\ln x+c \Rightarrow u={\ln x+C\over x} \Rightarrow y={x\over \ln x+C},故選\bbox[red,2pt]{(D)}
解答:{dy\over dx} =6e^{3x}y^2 \Rightarrow \int {1\over y^2}\;dy = \int 6e^{3x}\;dx \Rightarrow -{1\over y}=2e^{3x}+C \Rightarrow y=-{1\over 2e^{3x}+C} \\y(0)=1 \Rightarrow -{1\over 2+C}=1 \Rightarrow C=-3 \Rightarrow y=-{1\over 2e^{3x}-3} ={1 \over 3-2e^{3x}},故選\bbox[red,2pt]{(B)}
解答:由\hat f(w)可知:f(t)為矩形函數(\text{rect function}),故選\bbox[red,2pt]{(A)}
解答:\cases{x= r\cos \theta \Rightarrow {\partial x\over \partial r}= \cos\theta,{\partial x\over \partial \theta} =-r\sin \theta\\ y=r\sin \theta \Rightarrow {\partial y\over \partial r}= \sin\theta, {\partial y\over \partial \theta} = r\cos \theta} ;\\因此{\partial u\over \partial r} ={\partial u\over \partial x} {\partial x\over \partial r} +{\partial u\over \partial y} {\partial y\over \partial r} ={\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \\ \Rightarrow {\partial^2 u\over \partial r^2} = {\partial u\over \partial r} \left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right) ={\partial u\over \partial x}\left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right){\partial x\over \partial r} \\\qquad \qquad + {\partial u\over \partial y} \left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right) {\partial y\over \partial r}\\ = \left({\partial^2 u\over \partial x^2} \cos\theta+ {\partial^2 u\over \partial x \partial y} \sin\theta \right) \cos\theta + \left({\partial^2 u\over \partial x \partial y} \cos\theta+{\partial^2 u\over \partial y^2} \sin\theta \right) \sin \theta\\ ={\partial^2 u\over \partial x^2} \cos^2\theta+ {\partial^2 u\over \partial x \partial y} \sin\theta \cos\theta + {\partial^2 u\over \partial x \partial y} \cos\theta \sin \theta+{\partial^2 u\over \partial y^2} \sin^2 \theta \\ \Rightarrow {\partial^2 u\over \partial r^2} ={\partial^2 u\over \partial x^2} \cos^2\theta + 2{\partial^2 u\over \partial x \partial y} \cos\theta \sin \theta+{\partial^2 u\over \partial y^2} \sin^2\theta\cdots(1)\\同理{\partial u\over \partial \theta} ={\partial u\over \partial x}{\partial x\over \partial \theta} +{\partial u\over \partial y}{\partial y\over \partial \theta} ={\partial u\over \partial x}(-r\sin \theta) +{\partial u\over \partial y}r\cos \theta \\ \Rightarrow {\partial^2 u\over \partial \theta^2} = {\partial u\over \partial x}(-r\cos \theta) +(-r\sin\theta)\left( {\partial \over \partial x}{\partial u\over \partial x} {\partial x\over \partial \theta} + {\partial \over \partial y} {\partial u\over \partial x} {\partial y\over \partial \theta}\right) +{\partial u\over \partial y}(-r\sin \theta ) \\\qquad \qquad +r\cos\theta \left( {\partial \over \partial x}{\partial u\over \partial y} {\partial x\over \partial \theta} + {\partial \over \partial y} {\partial u\over \partial y} {\partial y\over \partial \theta}\right) \\= {\partial u\over \partial x}(-r\cos \theta) +(-r\sin\theta)\left( {\partial^2 u\over \partial x^2} (-r\sin\theta) + {\partial^2 u\over \partial x \partial y} r\cos \theta\right) +{\partial u\over \partial y}(-r\sin \theta )\\ \qquad\qquad +r\cos\theta \left( {\partial^2 u\over \partial x\partial y} (-r\sin \theta) + {\partial^2 u\over \partial y^2} r\cos\theta\right) \\ ={\partial u\over \partial x}(-r\cos \theta) + {\partial^2 u\over \partial x^2} (r^2\sin^2 \theta) - 2{\partial^2 u\over \partial x \partial y} r^2\sin \theta\cos \theta +{\partial u\over \partial y}(-r\sin \theta ) + {\partial^2 u\over \partial y^2} r^2\cos^2 \theta \\=-r\left( {\partial u\over \partial x}\cos \theta +{\partial u\over \partial y}\sin \theta\right) +r^2\left( {\partial^2 u\over \partial x^2} \sin^2 \theta - 2{\partial^2 u\over \partial x \partial y} \sin \theta\cos \theta +{\partial^2 u\over \partial y^2} \cos^2 \theta\right) \\ =-r{\partial u\over \partial r} +r^2\left( {\partial^2 u\over \partial x^2} \sin^2 \theta - 2{\partial^2 u\over \partial x \partial y} \sin \theta\cos \theta +{\partial^2 u\over \partial y^2} \cos^2 \theta\right) \\ \Rightarrow {1\over r^2}{\partial^2 u\over \partial \theta^2} =-{1\over r}{\partial u\over \partial r} + {\partial^2 u\over \partial x^2} \sin^2 \theta - 2{\partial^2 u\over \partial x \partial y} \sin \theta\cos \theta +{\partial^2 u\over \partial y^2} \cos^2 \theta \cdots(2)\\ (1)+(2) \Rightarrow {\partial^2 u\over \partial r^2}+ {1\over r^2}{\partial^2 u\over \partial \theta^2} =-{1\over r}{\partial u\over \partial r} +{\partial^2 u\over \partial x^2} +{\partial^2 u\over \partial y^2} \\ \Rightarrow {\partial^2 u\over \partial x^2} +{\partial^2 u\over \partial y^2}={\partial^2 u\over \partial r^2} +{1\over r}{\partial u\over \partial r}+ {1\over r^2}{\partial^2 u\over \partial \theta^2},故選\bbox[red,2pt]{(A)}
解答:y=e^{2x} \Rightarrow y'=2e^{2x} \Rightarrow y''=4e^{2x} \Rightarrow x^2y''+Axy'+By = 4x^2e^{2x}+2Axe^{2x}+Be^{2x} \\ =e^{2x}(4x^2+2Ax+B) \Rightarrow 無法找出固定的A與B使得4x^2+2Ax+B=0,\forall x\in \mathbb{R},故選\bbox[red,2pt]{(D)}
解答:\int_0^{\infty}{1\over t}e^{-st}\;dt 不存在,故選\bbox[red,2pt]{(B)}
解答:F_Y(y)=f(Y\le y) = f(8X^3\le y) = f(X\le {1\over 2}y^{1/3}) = \int_0^{y^{1/3}/2} 2x\;dx ={1\over 4}y^{2/3} \\ \Rightarrow f_Y(y) = {d\over dy}F_Y(y) ={1\over 6}y^{-1/3},故選\bbox[red,2pt]{(B)}
解答:{國小女性+中學女性人數\over 女性人數}={95\over 112},故選\bbox[red,2pt]{(C)}
解答:$P(X\ge 0.5) =\int_{0.5}^1 \int_0^{1-x} 24xy\;dydx =\int_{0.5}^1 12x(1-x)^2\; dx =\int_{0.5}^1 12x-24x^2+12^3\; dx \\=\left. \left[ 6x^2-8x^3-3x^4 \right] \right|_{0.5}^1 =1-{11\over 16}={5\over 16},故選\bbox[red,2pt]{(A)}
================== END =========================
解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言