Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2021年12月20日 星期一

103年國安情報人員-工程數學詳解

103年國家安全局國家安全情報人員考試

考 試 別:國家安全情報人員
等 別:三等考試
類 科 組:電子組
科 目:工程數學
甲、申論題部分:( 50 分)

解答
(一)xTAx=[x1x2][4514][x1x2]=[4x1+x25x14x2][x1x2]=4x21+x1x2+5x1x24x22=4x21+6x1x24x22=624×4×(4)>0Q(二)Q=xTAx=4x21+6x1x24x22=[x1x2][4334][x1x2]B=[4334]Q=xTBx(BA,BB=BT)BB=[3/101/101/103/10][5005][3/101/101/103/10]PDPT=[3/101/101/103/10]

解答y2y8y=0λ22λ8=0(λ4)(λ+2)=0λ=4,2yh=c1e4x+c2e2x{y1=e4xy2=e2xW=|y1y2y1y2|=|e4xe2x4e4x2e2x|=6e2xyp=y1y2r(x)Wdx+y2y1r(x)Wdx,r(x)=10ex+8e2xyp=e4x10e3x+86e2xdx+e2x10e3x+8e6x6e2xdx=e4x(13e5x+23e2x)+e2x(53ex13e4x)=2exe2xy=yh+yp=c1e4x+c2e2x2exe2xy=4c1e4x2c2e2x+2ex2e2x{y(0)=1y(0)=4{c1+c221=14c12c2+22=4{c1=2c2=2y=2e4xe2x2ex+2e2x

解答x4=1+i=2(12+i12)=2(cosπ4+isinπ4)=2ei(π/4+2kπ),kZxk=21/8ei(π/16+kπ/2),k=0,1,2,382eπi/16,82e9πi/16,82e17πi/16,82e25πi/16

解答
(一)20x2x22cxdydx=204cx3dx=[cx4]|20=16c=1c=116(二)fX(x)=x2x218xdy=14x3fX(x)={14x3,0x20,;

(三){2y18xdx=1/4y/162y18xdx=1/4+y/16fY(y)={14116y,0y414+116y,4y00,;

乙、測驗題部分:(50 分)


解答(xz,yz)|(4,1)=(2x,18y)|(4,1)=(8,18)=8(1,2.25)(A)

解答F×G=G×FG×F(A)
解答C(x(t),y(t)),{x(t)=cos(t)y(t)=sin(t){x(t)=sin(t)y(t)=cos(t),t=0π2CFdr=C(y,xy)(dx,dy)=π/20(sin(t))(sin(t)dt)+(sin(t)cos(t))(cos(t)dt)=π/20sin2(t)sin(t)cos2(t)dt=[12t14tsin(2t)+13cos3(t)]|π/20=π413{a=4b=3a+b=1(A)
解答{F=(x,y,z)=(x,y,z){F=xx+yy+zz=1+1+1=3×F=(yzzy,zxxz,xyyx)=0(D)
解答Hermitian (C)
解答tr(AB)=(4,5,7)(2,7,10)+(3,6,8)(5,9,13)=113+183=286(D)
解答(B)(C)(D)T(0,0)=(0,0)(A)
解答f(t)=det
解答e^z=1+i\sqrt 3=2({1\over 2}+i{\sqrt 3\over 2})=2(\cos(\pi/3)+ i\sin(\pi/3))=e^{\ln 2}\cdot e^{i\pi/3} \\=e^{\ln 2+i\pi/3} \Rightarrow z=\ln 2+i(\pi/3+2k\pi),k\in \mathbb{Z},故選\bbox[red,2pt]{(D)}
解答|z|\lt |3+4i|=5收斂,故選\bbox[red,2pt]{(C)}
解答 令y=x+2 \Rightarrow {x-2\over x^2+4x+5} ={x-2\over (x+2)^2+1}={y-4\over y^2+1} =(y-4)(1-y^2+y^4-y^6+\cdots) \\ =(y-y^3+y^5-y^7+\cdots )-(4-4y^2+4y^4-4y^6+ \cdots)\\ \Rightarrow y^2\lt 1則上式收斂,即(x+2)^2 \lt 1 \Rightarrow  |x+2|\lt 1,收斂半徑為1,故選\bbox[red,2pt]{(B)}
解答x^2y'+y^2=xy \Rightarrow y'-{1\over x}y=-{1\over x^2}y^2 \text{ (Bernoulli equation)}\\ 取u={1\over y} \Rightarrow u'= -{1\over y^2}y'代回原式\Rightarrow u'+{1\over x}u={1\over x^2} \Rightarrow xu'+u={1\over x} \Rightarrow (xu)'={1\over x}\\ \Rightarrow xu=\ln x+c \Rightarrow u={\ln x+C\over x} \Rightarrow y={x\over \ln x+C},故選\bbox[red,2pt]{(D)}
解答{dy\over dx} =6e^{3x}y^2 \Rightarrow \int {1\over y^2}\;dy = \int 6e^{3x}\;dx \Rightarrow -{1\over y}=2e^{3x}+C \Rightarrow y=-{1\over 2e^{3x}+C} \\y(0)=1 \Rightarrow -{1\over 2+C}=1 \Rightarrow C=-3 \Rightarrow y=-{1\over 2e^{3x}-3} ={1 \over 3-2e^{3x}},故選\bbox[red,2pt]{(B)}
解答由\hat f(w)可知:f(t)為矩形函數(\text{rect function}),故選\bbox[red,2pt]{(A)}
解答\cases{x= r\cos \theta \Rightarrow  {\partial x\over \partial r}= \cos\theta,{\partial x\over \partial \theta} =-r\sin \theta\\ y=r\sin \theta \Rightarrow  {\partial y\over \partial r}= \sin\theta, {\partial y\over \partial \theta} = r\cos \theta} ;\\因此{\partial u\over \partial r} ={\partial u\over \partial x} {\partial x\over \partial r} +{\partial u\over \partial y} {\partial y\over \partial r} ={\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \\ \Rightarrow {\partial^2 u\over \partial r^2} = {\partial u\over \partial r} \left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right) ={\partial u\over \partial x}\left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right){\partial x\over \partial r} \\\qquad \qquad + {\partial u\over \partial y} \left({\partial u\over \partial x} \cos\theta+{\partial u\over \partial y} \sin\theta \right) {\partial y\over \partial r}\\ = \left({\partial^2 u\over \partial x^2} \cos\theta+ {\partial^2 u\over \partial x \partial y} \sin\theta \right) \cos\theta +  \left({\partial^2 u\over \partial x \partial y} \cos\theta+{\partial^2 u\over \partial y^2} \sin\theta \right) \sin \theta\\ ={\partial^2 u\over \partial x^2} \cos^2\theta+ {\partial^2 u\over \partial x \partial y} \sin\theta \cos\theta + {\partial^2 u\over \partial x \partial y} \cos\theta \sin \theta+{\partial^2 u\over \partial y^2} \sin^2 \theta \\ \Rightarrow {\partial^2 u\over \partial r^2} ={\partial^2 u\over \partial x^2} \cos^2\theta  + 2{\partial^2 u\over \partial x \partial y} \cos\theta \sin \theta+{\partial^2 u\over \partial y^2} \sin^2\theta\cdots(1)\\同理{\partial u\over \partial \theta} ={\partial u\over \partial x}{\partial x\over \partial \theta} +{\partial u\over \partial y}{\partial y\over \partial \theta} ={\partial u\over \partial x}(-r\sin \theta)  +{\partial u\over \partial y}r\cos \theta \\ \Rightarrow {\partial^2 u\over \partial \theta^2} = {\partial u\over \partial x}(-r\cos \theta) +(-r\sin\theta)\left( {\partial \over \partial x}{\partial u\over \partial x} {\partial x\over \partial \theta} + {\partial \over \partial y} {\partial u\over \partial x} {\partial y\over \partial \theta}\right) +{\partial u\over \partial y}(-r\sin \theta ) \\\qquad \qquad +r\cos\theta \left( {\partial \over \partial x}{\partial u\over \partial y} {\partial x\over \partial \theta} + {\partial \over \partial y} {\partial u\over \partial y} {\partial y\over \partial \theta}\right) \\= {\partial u\over \partial x}(-r\cos \theta) +(-r\sin\theta)\left(  {\partial^2 u\over \partial x^2} (-r\sin\theta) +  {\partial^2 u\over \partial x \partial y} r\cos \theta\right) +{\partial u\over \partial y}(-r\sin \theta )\\ \qquad\qquad +r\cos\theta \left(  {\partial^2 u\over \partial x\partial y} (-r\sin \theta) +  {\partial^2 u\over \partial y^2} r\cos\theta\right) \\ ={\partial u\over \partial x}(-r\cos \theta) +  {\partial^2 u\over \partial x^2} (r^2\sin^2 \theta) -  2{\partial^2 u\over \partial x \partial y} r^2\sin \theta\cos \theta  +{\partial u\over \partial y}(-r\sin \theta ) +  {\partial^2 u\over \partial y^2} r^2\cos^2 \theta \\=-r\left( {\partial u\over \partial x}\cos \theta +{\partial u\over \partial y}\sin \theta\right) +r^2\left( {\partial^2 u\over \partial x^2} \sin^2 \theta -  2{\partial^2 u\over \partial x \partial y}  \sin \theta\cos \theta +{\partial^2 u\over \partial y^2}  \cos^2 \theta\right) \\ =-r{\partial u\over \partial r} +r^2\left( {\partial^2 u\over \partial x^2} \sin^2 \theta -  2{\partial^2 u\over \partial x \partial y}  \sin \theta\cos \theta +{\partial^2 u\over \partial y^2}  \cos^2 \theta\right) \\ \Rightarrow {1\over r^2}{\partial^2 u\over \partial \theta^2} =-{1\over r}{\partial u\over \partial r} +  {\partial^2 u\over \partial x^2} \sin^2 \theta -  2{\partial^2 u\over \partial x \partial y}  \sin \theta\cos \theta +{\partial^2 u\over \partial y^2}  \cos^2 \theta \cdots(2)\\ (1)+(2) \Rightarrow {\partial^2 u\over \partial r^2}+ {1\over r^2}{\partial^2 u\over \partial \theta^2} =-{1\over r}{\partial u\over \partial r} +{\partial^2 u\over \partial x^2} +{\partial^2 u\over \partial y^2} \\ \Rightarrow {\partial^2 u\over \partial x^2} +{\partial^2 u\over \partial y^2}={\partial^2 u\over \partial r^2} +{1\over r}{\partial u\over \partial r}+ {1\over r^2}{\partial^2 u\over \partial \theta^2},故選\bbox[red,2pt]{(A)}
解答y=e^{2x} \Rightarrow y'=2e^{2x} \Rightarrow y''=4e^{2x} \Rightarrow x^2y''+Axy'+By = 4x^2e^{2x}+2Axe^{2x}+Be^{2x}  \\ =e^{2x}(4x^2+2Ax+B)  \Rightarrow 無法找出固定的A與B使得4x^2+2Ax+B=0,\forall x\in \mathbb{R},故選\bbox[red,2pt]{(D)}
解答\int_0^{\infty}{1\over t}e^{-st}\;dt 不存在,故選\bbox[red,2pt]{(B)}
解答F_Y(y)=f(Y\le y) = f(8X^3\le y) = f(X\le {1\over 2}y^{1/3}) = \int_0^{y^{1/3}/2} 2x\;dx ={1\over 4}y^{2/3} \\ \Rightarrow f_Y(y) = {d\over dy}F_Y(y) ={1\over 6}y^{-1/3},故選\bbox[red,2pt]{(B)}
解答{國小女性+中學女性人數\over 女性人數}={95\over 112},故選\bbox[red,2pt]{(C)}
解答$P(X\ge 0.5) =\int_{0.5}^1 \int_0^{1-x} 24xy\;dydx =\int_{0.5}^1 12x(1-x)^2\; dx =\int_{0.5}^1 12x-24x^2+12^3\; dx \\=\left. \left[ 6x^2-8x^3-3x^4 \right] \right|_{0.5}^1 =1-{11\over 16}={5\over 16},故選\bbox[red,2pt]{(A)}

================== END =========================

解題僅供參考,其他國考試題及詳解

沒有留言:

張貼留言